

Implementation of single-step evaluations for fitness traits in the German and Austrian Fleckvieh and Brown Swiss populations

Judith Himmelbauer, Hermann Schwarzenbacher, Christian Fürst ZuchtData

Vienna, 30th April 2021

Introduction

April 2021: official single step genomic breeding values

2

Quick look at genotypes (April 2021)

Fleckvieh

Brown Swiss

around 10% of heifers and young cows in the Austrian breeding population are genotyped

Quick look at traits

Animals/Observations in the **training sample** of Single-Step: (Fleckvieh, April 2021)

Trait	Bulls		
longevity	21,087	+99%	
fertility	21,718	+87%	
calving ease	27,535	+84%	
rearing losses	27,855	+111%	
mastitis	11,122	New!	
early fertility disorders	17,488	New!	
cystic ovaries	11,090	New!	

Trait	longevity	fertility	calving ease	rearing losses	mastitis	fertility disorders	cysts
h2	11%	3%	6%	2%	2%	2%	2%

4

Validation of Single-Step GEBVs

GEBV Test

- **full** and **reduced** Dataset (minus 4 years)
- Validation group:
 - young bulls

 Validation based on DYDs or deregressed proofs

 $(\rightarrow$ **Deregression** of EBVs necessary)

LR-Method (*Legarra and Reverter (2018*): Linear Regression method)

- full and reduced Dataset (minus 4 years)
- Validation groups:
 - several groups possible
 - large groups of animals
 - groups of female animals
- Validation based on EBVs
 → genotypes are considered in the full dataset
 → no Deregession needed (easier for traits with low h²)

Validation: LR-Method

(April 2021 (*December 2020), Trait: longevity, Breed: Fleckvieh)

		Dispersion	Accuracy
Group of animals	N		

G-Matrix: Scaling

G-Matrix:

- VanRaden's method one G:
- Base allele frequencies estimated based on bulls with progeny
- inverted with algorithm for "parents (core)" and "young (noncore)" (APY) (Misztal et al., 2015)

 $G = \frac{ZZ'}{2\sum p_i q_i}$

• Core: male animals with progeny (FV: 30,660 / BS: 12,980)

Scaling G:

• α and β derived by applying O. F. Christensen et al. (2012) on the core animals

 $G_{sc} = \beta G_{\nu R} + \alpha$

- $\alpha \approx 0.00520$
- $\beta \approx 1.00957$

G-Matrix: Effects of Scaling

(December 2020, Breed: Fleckvieh)

Statistics of G_{vR} :

• Mean Diagonal: 1.016 (0.0235); [0.943; 1.298]

Statistics of G_{sc}:

• Mean Diagonal: 1.030 (0.0237); [0.957; 1.315]

G-Matrix: Effects of Scaling

(April 2021, Breed: Fleckvieh)

Statistics of G_{vR} :

- Mean Diagonal: 1.015 (2.360); [0.942; 1.297]
 Statistics of G_{sc}:
- Mean Diagonal: 1.030 (2.384); [0.956; 1.315]

(Trait: longevity)

30.04.21

G-Matrix: Singularity-prevention

add a small value on diagonal of G

- makes G invertible
- improves convergence behaviour

→high correlations of breeding values: >0.99 (add=0.01 vs. add=0.001)

→ Considerable effects on bias in the family of bulls with many genotyped progeny

Year of birth (sire)

Year of birth (sire)

Summary and Outlook

Validation using LR-method:

- possibility to consider female animals in validation
- quite easy to compute

Scaling of G-Matrix:

- scaling to fit G to NRM
- small scaling has noticeable effects

Singularity prevention:

- inconsistencies due to manipulation of the diagonal
- \rightarrow MS-Bias in bull families with many genotyped progeny

THANK YOU FOR YOUR ATTENTION

