Integration of MACE breeding values into the multiple-trait single-step random regression test-day genetic evaluation for yield traits of Australian red breeds

Interbull meeting, Montreal, 2022

Vinzent Boerner1,2, Thuy Nguyen3, and Gert Nieuwhof3

1GHPC CONSULTING AND SERVICES PTY. LTD., Australia
2Centre for Quantitative Genetics and Genomics, Aarhus University, Denmark
3DataGene Limited, Australia

30/05/2022
Why integration

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability

Bull XYZ
Why integration

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability

Country B
- few/no off-spring (still high-performing)
- maybe genotyped
- additional/first off-spring
 - inferior parent-average
 - low selection probability
Why integration

Bull XYZ

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability

Unhappy breeder

Country B
- few/no off-spring (still high-performing)
- maybe genotyped
- additional/first off-spring
 - inferior parent-average
 - low selection probability
Why integration

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability

Country B
- few/no off-spring (still high-performing)
- maybe genotyped
- additional/first off-spring
 - inferior parent-average
 - low selection probability

Unhappy breeder

Genetic progress

Bull XYZ
Why integration

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability

Country B
- few/no off-spring (still high-performing)
- maybe genotyped
- additional/first off-spring
 - inferior parent-average
 - low selection probability
Why integration

Bull XYZ

Country A
- many off-spring (high-performing)
- additional off-spring
 - high parent-average
 - high selection probability
- enhanced information
- happy breeders
- genetic progress

Country B
- few/no off-spring (still high-performing)
 - maybe genotyped
- additional/first off-spring
 - inferior parent-average
 - low selection probability
multiple-trait random-regression test day model
multiple-trait random-regression test day model

- Nine traits → three traits in three lactations
 - Milk
 - Fat
 - Protein
- 27 genetic effects
 - Legendre polynomials 0, 1 and 2
multiple-trait random-regression test day model

- nine traits \rightarrow three traits in three lactations
 - milk
 - fat
 - protein
- 27 genetic effects
 - Legendre polynomials 0, 1 and 2

\[
\begin{pmatrix}
 y_{l,t} \\
 \vdots \\
 y_{3,3}
\end{pmatrix} =
\begin{pmatrix}
 X_l \otimes I_3 \\
 \qquad \qquad 0
\end{pmatrix}
\begin{pmatrix}
 b_{l,t} \\
 \qquad \qquad 0
\end{pmatrix} +
\begin{pmatrix}
 f_0(K_l), \ldots, f_4(K_l) \otimes I_3 \\
 \qquad \quad \vdots \\
 f_0(K_3), \ldots, f_2(K_3) \otimes I_3
\end{pmatrix}
\begin{pmatrix}
 c_{l,t} \\
 \qquad \qquad c_{3,3}
\end{pmatrix}
\flushright
[\begin{pmatrix}
 u_{l,t,f_0}, \ldots, u_{3,3,f_2}
\end{pmatrix}] \sim N(0, \Gamma \otimes \Sigma_g)
\]

\[
\Gamma = \begin{pmatrix}
 \Theta & \Theta Q' \\
 Q\Theta & Q\Theta Q' + H
\end{pmatrix}
\]

- $H \rightarrow$ single step H matrix
- $Q \rightarrow$ genetic group regression matrix
- $\Theta \rightarrow I \times 0.65$
Evaluation data set

- 10,000,614 observations across three traits and three lactations
 - Milk yield in litre
 - Fat yield in kg
 - Protein yield in kg
- Pedigree
 - 975,532 individuals
 - 73 phantom parents
- Genotypes
 - 8,191 animals
 - Various platforms
 - Imputed to common set of 73,000
Integration data set

Abulls

- 466 individuals
- Information provided to Interbull
- 212 genotyped
- Eligibility for integration:
 - \(\text{rel}_{\text{itb}} - \text{rel}_{\text{domestic}} > 0.01 \)
Integration data set

Abulls
- 466 individuals
- Information provided to Interbull
- 212 genotyped
- Eligibility for integration: \(r_{itb} - r_{domestic} > 0.01 \)

Bbulls
- 15,597 individuals
- No information provided to Interbull
- 116 genotyped
- Eligibility for integration: all
Integration data set

Abulls
- 466 individuals
- 212 genotyped
- Eligibility for integration:
 - \(rel_{itb} - rel_{domestic} > 0.01 \)

Bbulls
- 15,597 individuals
- 116 genotyped
- Eligibility for integration:
 - All

Dimension problem:
27 genetic effects vs 3 Interbull breeding values
Integration methodology

Global approach: pseudo data point with data-point specific residual variance as the single tuning parameter

Overcome dimension discrepancy:

- $\mathbb{R}_{27} \rightarrow \mathbb{R}_{9}$
 - $\Sigma_g^* = \Omega \Sigma_g \Omega'$
 - $\Sigma_g \rightarrow 27 \times 27$ genetic co-variance matrix
 - $\Omega \rightarrow 9 \times 27$ block matrix of Legendre polynomial coefficients
- $\mathbb{R}_{3} \rightarrow \mathbb{R}_{9}$
 - $u_{i,*} = Ku_{i,:}$
 - $r_{i,*} = Kr_{i,:}$
 - $p_{i,*} = (1 - r_{i,*}) \odot \text{diag}(\Sigma_g^*)$
 - $u_{i,:} \rightarrow$ vector of breeding values of animal i
 - $r_{i,:} \rightarrow$ vector of reliabilities of animal i
 - $p_{i,:} \rightarrow$ vector of prediction error variances of animal i
 - "." sent to Interbull(SENT) or received from Interbull(ITB)
 - $K \rightarrow 9 \times 3$ matrix of diagonal blocks
Integration methodology

Global approach: pseudo data point with data-point specific residual variance as the single tuning parameter

Derive a pseudo data point:

- $\text{diag}((D_{i,:} + \Pi_i)^{-1}) \equiv p_{i,:}$
 - iterative procedure if $\mathbb{R} > 1$
 - maybe >50k iterations (parameterization, Σ radius, consistency of p_i)
- $D_{i,:} \approx R^{-1}$
- Π_i?
 - $C_{i,i} - C_{i,:}C_{i,:}^{-1}C_{i,:} \rightarrow$ exact but infeasible
 - $\Sigma_g^{-1} \rightarrow$ usually sufficient
Integration methodology

Global approach: pseudo data point with data-point specific residual variance as the single tuning parameter

Derive a pseudo data point:

Abulls
- $D_{i,R} = D_{i,ITB} - D_{i,SENT}$
- $y_i^* = D_{i,R}^{-1}((D_{i,ITB} + \Sigma_a^{*-1})u_{i,ITB}^* - (D_{i,SENT} + \Sigma_a^{*-1})u_{i,SENT}^*)$

Bbulls
- $y_i^* = D_{i,ITB}^{-1}((D_{i,ITB} + \Sigma_a^{*-1})u_{i,ITB}^*)$
Integration methodology

Global approach: pseudo data point with data-point specific residual variance as the single tuning parameter

Tweak MIX99 input:
- add y^* to data
- add $D_{i,R}^{-1}(ABulls)$ or $D_{i,ITB}^{-1}(BBulls)$ to residual variance file
- set “DIM” for y^* to 306
- add extra level associated to y^* to all fixed classification effects
- add row 306 to regression table file $\rightarrow \int_0^{305} L_i$
Method evaluation

ABulls

- **expectation driver**
 - \(r_{ITB} > r_{SENT} \)
 - \(\begin{pmatrix} \sigma^2_{ITB} & \sigma^2_{SENT} \\ \sigma^2_{SENT} & \sigma^2_{SENT} \end{pmatrix} \)

- **expectation**
 - \(r_{blended} \approx r_{ITB} \)
 - \(u_{blended} \approx u_{ITB} \)

- **evaluation parameters**
 - \(\text{cor}(::blended, ::ITB) \)
 - \(\text{lm}(::blended \sim ::ITB) \)
Method evaluation

ABulls
- expectation driver
 - \(r_{ITB} > r_{SENT} \)
 - \(\begin{pmatrix} \sigma^2_{ITB} & \sigma^2_{SENT} \\ \sigma^2_{SENT} & \sigma^2_{SENT} \end{pmatrix} \)
- expectation
 - \(r_{blended} \approx r_{ITB} \)
 - \(u_{blended} \approx u_{ITB} \)
- evaluation parameters
 - \(\text{cor}(\text{blended}, \text{ITB}) \)
 - \(\text{lm}(\text{blended} \sim \text{ITB}) \)

BBulls
- expectation driver
 - \(\begin{pmatrix} \sigma^2_{ITB} & 0 \\ 0 & \sigma^2_{DOM} \end{pmatrix} \)
- expectation
 - \(r_{blended} \geq \max(r_{ITB}, r_{DOM}) \)
- evaluation parameters
 - \(? \rightarrow \) nice plots
Results

- very similar for all three traits
- only shown for protein
Results: ABulls

breeding values

\[y = 7.84 + 0.862 \times \quad R^2 = 0.94 \]

\[y = 9.02 + 0.989 \times \quad R^2 = 0.99 \]

- genotyped
- not genotyped
Results: **ABulls**

reliabilities

\[y = -0.296 + 1.3 x \quad R^2 = 0.93 \]

\[y = 0.126 + 0.873 x \quad R^2 = 0.98 \]
Results: **BBulls**

breeding values

\[y = 12.6 + 0.02x \quad R^2 = 0.01 \]

\[y = 14.5 + 1.01x \quad R^2 = 0.98 \]
Results: **B Bulls**

reliabilities

- Pre-integration:
 \[y = -0.195 + 0.399 \times R^2 = 0.05 \]

- Post-integration:
 \[y = -0.0543 + 1.12 \times R^2 = 0.83 \]
Results: Population impact

reliabilities

<table>
<thead>
<tr>
<th>statistic</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>0.4118</td>
</tr>
<tr>
<td>no change</td>
<td>53.3%</td>
</tr>
<tr>
<td>>0.01 increase</td>
<td>46.7%</td>
</tr>
<tr>
<td>>0.05 increase</td>
<td>5.613%</td>
</tr>
<tr>
<td>>0.1 increase</td>
<td>4.914%</td>
</tr>
<tr>
<td>>0.25 increase</td>
<td>0.001876%</td>
</tr>
</tbody>
</table>

breeding values

<table>
<thead>
<tr>
<th>statistic</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>-30.8</td>
</tr>
<tr>
<td>max</td>
<td>27.79</td>
</tr>
<tr>
<td>>1% change</td>
<td>84.17%</td>
</tr>
<tr>
<td>>5% change</td>
<td>42.28%</td>
</tr>
<tr>
<td>>10% change</td>
<td>28.6%</td>
</tr>
<tr>
<td>>25% change</td>
<td>14.96%</td>
</tr>
</tbody>
</table>
Results: **Population impact**

animal re-ranking

![Graph showing animal re-ranking with a correlation coefficient of ρ = 0.99. The graph displays the relationship between pre-integration rank and post-integration rank, with color indicating counts ranging from 5000 to 15000.](image-url)
Conclusions

- integration successful
- expectations met for ABulls and BBulls
- population wide impact of integrated data points
Conclusions

- integration successful
 - expectations met for ABulls and BBulls
 - population wide impact of integrated data points

- possible sources for evaluation bias
 - approximation of $C_{i,i} - C_{i,\neq i}C_{\neq i,\neq i}^{-1}C_{\neq i,i}$
 - $D_{i,:}$ ignores relationships between integration candidates
 - joint $D_{i,:} \rightarrow$ computational feasible?
 - possible negative impact on long-term genetic trend
 - assumption $\Sigma_{a,\text{ITB}} \equiv \Sigma_{a,\text{DOM}}$ may not hold
Conclusions

- integration successful
 - expectations met for ABulls and BBulls
 - population wide impact of integrated data points

- possible sources for evaluation bias
 - approximation of $C_{i,i} - C_{i,\neq i}C_{\neq i,\neq i}^{-1}C_{\neq i,i}$
 - $D_{i,:}$ ignores relationships between integration candidates
 - joint $D_{i,:} \rightarrow$ computational feasible?
- possible negative impact on long-term genetic trend
 - assumption $\Sigma_{a,ITB} \equiv \Sigma_{a,DOM}$ may not hold

- impact of genomics
 - sources of evaluation bias are equivalent to no-genomics
 - extent of evaluation bias \uparrow?!
THANK YOU!!!