

Genetic architecture of fertility traits in hormonally synchronized and heat detected dairy cows

GA Oliveira Junior¹, **CM Rochus**¹, L Alcantara¹, C Lynch¹, FS Schenkel¹, CF Baes^{1,2}

¹Centre for the Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph ²Institute of Genetics, Department of Clinical Research and Veterinary Public Health, University of Bern

Acknowledgements

- High-producing cows may have:
 - Shortened estrus
 - Reduced behavioural signs

(MacMillan, 2010; Walsh et al., 2011; Wiltbank et al., 2011)

Accurate estrus detection is required for successful artificial insemination (AI)

(Sales et al., 2011)

Timed artificial insemination (TAI)

- TAI: Estrus synchronization, combined with artificial insemination
- Increases the efficiency of AI
- Increasingly popular management tool
- Can be used to reduce the interval between calving and conception

TAI affects the accuracy of genetic evaluations

- TAI allows genetically inferior animals to show similar fertility phenotypes as superior animals
- Accuracy of EBV decreased as the use of TAI increased in simulations (Oliveira Jr et al., 2021)
- Large re-ranking of bulls when using only TAI or heat detection (HD) records (Lynch et al., 2021)

Lynch et al., 2021

- 1. Estimate the genetic correlation (r_g) between fertility traits measured on Canadian Holstein cows where HD and TAI were used
- 2. Identify different genomic regions associated with TAI and HD fertility traits using genome-wide association studies

Material and methods

- Data provided by Lactanet (Guelph, Ontario, Canada) containing 3842 breeding protocol descriptions:
 - 1840 HD
 - 2002 TAI
- Four traits for first parity cows:
 - Calving to first service (CTFS): 61,542 HD and 33,346 TAI
 - First service to conception (FSTC): 55,144 HD and 29,281 TAI
 - Days open (DO) : 55,144 HD and 29,281 TAI
 - 305-day milk yield (MILK)
- 50K SNP genotype data:
 - 6985 with FSTC and DO records
 - 7220 with CTFS records

$$y_{ijkl} = \mu + RYM_i + AM_j + H_k + a_i + e_{ijkl}$$

 y_{ijkl} is the observed phenotype (e.g. CTFS HD, CTFS TAI, MILK) of the l^{th} cow

RYM_{*i*} is the fixed effect of region-year-month born

 AM_j is the fixed effect of age previous calving-month (for DO and CTFS) or first service (for FSTC)

 H_k is the random effect of herd-year born

 a_l is the random additive genetic effect of the l^{th} cow

 e_{ijkl} is the vector of random residuals

Genetic correlations and heritability for fertility traits

Heritabilities on the diagonal and genetic correlations above the diagonal (\pm SE)

	FSTC HD	FSTC TAI	CTFS HD	CTFS TAI	DO HD	DO TAI	MILK
FSTC HD	0.02 ± 0.002	0.71 ± 0.04					0.36 ± 0.04
FSTC TAI		0.03 ± 0.002					0.37 ± 0.04
CTFS HD			0.02 ± 0.002	0.89 ± 0.03			0.36 ± 0.03
CTFS TAI				0.01 ± 0.001			0.34 ± 0.04
DO HD					0.03 ± 0.002	0.91 ± 0.01	0.42 ± 0.03
DO TAI						0.04 ± 0.003	0.41 ± 0.03
MILK							0.28 ¹

¹Average heritability from the three multi-trait analyses

Calving to first service

First service to conception: no overlapping significant peaks

TGF-beta signaling pathway Estrogen signaling pathway 11

Days open: no overlapping significant peaks

TGF-beta signaling pathway Estrogen signaling pathway 12

Shared significant peaks within HD and TAI fertility traits

HD	Chromosome	Position	Candidate gene	Candidate gene position
DO and FSTC	13	5,483,393		
	14	68,228,943	GDF6	14:68,058,424-68,075,722

ΤΑΙ	Chromosome	Position	Candidate gene	Candidate gene position	
DO and FSTC	1	90,545,947-101,780,022			
	4	100,990,430	PTN	4:100,885,905-100,995,239	
	5	21,048,868	DCN	5:21,014,376-21,053,400	
	16	30,505,468			
	21	46,169,637			
	22	11,209,744			

Conclusions

- Genetic correlations between HD and TAI fertility traits (FSTC, CTFS, and DO) < 1 suggesting different traits
- Genome-wide association studies revealed different genetic backgrounds between HD and TAI fertility traits