

Preliminary analysis of herd management data for development of genetic evaluations for enhanced disease resistance in dairy cattle

R. Bongers¹, C. Lynch¹, F. Miglior^{1, 2}, F. S. Schenkel¹, H. R. Oliveira², D.F. Kelton³, N. van Staaveren¹, K. Houlahan¹, C. F. Baes^{1,4}

¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph; ²Lactanet Canada, Guelph, Ontario, Canada; ³Department of Population Medicine, University of Guelph, Ontario, Canada; ⁴Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland

IMPROVE LIFE.

Overview of genetic evaluations in Canada

Production

Conformation

Functional

Reproduction

A national system for collecting health events in Canada started in 2007 Eight key diseases (*mastitis, ketosis, displaced abomasum, milk fever, metritis, cystic ovaries, retained placenta, and lameness*)

Overview

Johne's

Calf health

Conclusions

Health genetic evaluations in Canada

Overview

Novel health traits

Leukosis

Johne's

Calf health

Leukosis: What is it?

Leukosis: How is it detected?

Milk ELISA test

- Sensitivity = 97% 100%
- Specificity = 78% 100%

Blood PCR

Calves < 6 months

Johne's

Introduction

87% of herds infected, out of herds which test for leukosis

> **39%** of cows infected on farms with leukosis present

Leukosis in Canada

Overview

$$y_{ijkl} = ys_j + la_k + hy_i + a_l + e_{ijkl}$$

where

- y_{ijkl} is the leukosis test result (0=healthy, 1=sick)
- ys_i is the fixed effect of year-season of calving (61 levels)
- la_k is the fixed effect of lactation-age class at calving (17 levels)
- hy_i is the random effect of herd-year of calving (2,502 levels)
- a_l is the random additive genetic effect
- e_{ijkl} is the random residual effect

Leukosis: Results

Variances*		
Genetic	0.02	
Herd-Year	0.06	
Residual	0.14	
Phenotypic	0.22	

* All standard errors < 0.01

Leukosis heritability: 0.10 (SE = 0.01)

Leukosis

Johne's

Calf health

Leukosis: Next steps

Johne's: What is it?

Caused by Mycobacterium avium ssp. paratuberculosis (MAP) Wasting disease causing chronic intestinal inflammation

No treatment or commercially viable vaccine

Johne's in Canada

40% of herds infected, out of herds which test for Johne's

> **3%** of cows infected on farms with Johne's present

Overview

Johne's: Future work

LOADING

Work is ongoing to estimate heritability for Johne's disease

Overview

Calf health: What is it?

Incidence rates

• Diarrhea: 33%

Overview

• Respiratory disease: 12%

Leukosis

Johne's

Causes of pre-weaning mortality

15

Calf health in Canada

	Diarrhea	Respiratory disease
Diseased	18,887	43,281
Healthy	101,857	212,502
Total records	120,774	255,783
Number of herds	425	664

Calf disease rates in Canada

Overview

Leukosis

Johne's

Calf health

$$l = Xb + Za + e$$

where

- *l* is a vector of underlying liabilities corresponding to the binary observation (0= healthy, 1= diseased)
- *b* is a vector of systematic fixed effects of year-month born and herd
- *a* is a vector of random additive genetic effects
- *e* is a vector of random residuals
- X and Z are corresponding incidence matrices

Calf health: preliminary results

Diarrhea heritability: 0.011 (SE = 0.001)

Respiratory disease heritability: 0.035 (SE = 0.003)

Johne's

Further work to be done before this can be implemented into genetic evaluations

Analysis is still ongoing for these novel health traits

Improved recording needed for calf health

Conclusions

The inclusion of additional health traits into Canadian genetic evaluations would allow the opportunity to select for broader disease resistance

Overview

Johne's

Acknowledgements

Thank you for listening!

Questions?

For further questions:

Renee Bongers rbongers@uoguelph.ca

Colin Lynch clynch@uoguelph.ca