Nordic genomic prediction for crossbred dairy females

K. Byskov¹, H. Liu¹, G.P. Aamand²

¹SEGES Innovation P/S, Aarhus N, Denmark ²Nordic Cattle Genetic Evaluation, Aarhus N, Denmark

> ICAR/Interbull Annual Conference Montréal, May 30- June 3, 2022

Nordisk AvIsværdi Vurdering • Nordic Cattle Genetic Evaluation

NAV

Why?

- Possibility at herd level to select more accurately across crossbred females in Nordic countries
 - Female sexed semen, Beef semen or culling
- Until now phenotypic evaluation in Denmark for yield and pedigree index corrected for breed level for fertility and mastitis
- GEBVs calculated for 15 composite traits and NTM

NAV • Additionally sub traits for yield and conformation

Which animals get XXX-GEBV

- XXX females with genomic test and approved pedigree
- Sire and MGS either RDC, HOL, JER
- Genotypes imputed and phased
 - Fimpute (Sargolzaei et al., 2014)
- Assigned Breed of Origin >0.9
 - AllOr (Eiriksson, 2021)

NAV

Choice of method

NAV

- In the DairyCross project a Breed Origin Model (BOM) and a Breed Proportion Model (BPM) were compared for protein yield and fertility trait IFL.
- BOM where more accurate and experienced less breed level bias than BPM.

Eiríksson et al., 2022, J Dairy Sci, Volume 105

- μ_b is the intercept, accounting for difference in breed averages for breed *b* (phenotype average- average DGV)
- s_{j,i,b} is a vector of breed of origin indication for allele *j* of animal *i* to breed *b*, with 1 for alleles assigned to breed *b* and 0 for alleles assigned to other breeds and proportional values for alleles that could not be assigned
- *m* is the number of markers
- **v**_b is a vector of marker effects for breed b
- where $\mathbf{w}_{i,j}$ contains haplotype *j* coded as 0 and 1 for the alternative alleles
- o o is element vise multiplication
- o a; is a residual polygenic effect

- μ_b is the intercept, accounting for difference in breed averages for breed b (phenotype mean average DGV)
- *s_{j,i,b}* is a vector of breed of origin indication for allele *j* of animal *i* to breed *b*, with 1 for alleles assigned to breed *b* and 0 for alleles assigned to other breeds and proportional values for alleles that could not be assigned

						HOL	JER	RDC
2 2 2 2 2	2	22	2	2	2 1	1.00000000	0.0000000	0.0000000
2 2 2 2	2	2 2	2	2	2 2	0.0000000	1.00000000	0.00000000
0 0 0	1	u	-	2	3	0.50000000	0.50000000	0.00000000
					4	0.00000000	0.0000000	1.00000000
<i>m</i> is the number of markers					5	0.50000000	0.0000000	0.50000000
					6	0.0000000	0.50000000	0.50000000
					7	0.333333343	0_333333343	0 333333343

- vb is a vector of marker effects for breed b
- *w_{i,i}* contains haplotype *j* coded as 0 and 1 for the alternative alleles
- o o is element vise multiplication
- o ai is a residual polygenic effect

NAV

Theory is rather straight forward...

- But need to overcome some practical challenges
 - Marker effects and polygenic effects on index scale.
 - Differences in phenotypic effect of an index unit among breeds
 - Some traits were composite traits
 - Summarize breed level differences over more sub-traits

Nordisk Avlsværdi Vurdering • Nordic Cattle Genetic Evaluation

NAV

Phenotypic results - Production

High vs low group Phenotypic diff - Protein

Conclusions

- A Breed of Origin Model for GEBV calculation of XXX Nordic females have been implemented.
- Utilize marker effects from the official genomic predictions of HOL, RDC and JER
- Within herd phenotypic differences indicate higher accuracy than pedigree index from current non-genomic evaluation

Next step

NAV

- Utilize models developed in GenTORE project with summary statistics
 - Include breeds without Nordic pure breed genomic evaluation – especially MON
 - Include phenotypic performance from crossbred cows in the evaluation

Karaman et al., 2021, GSE, Volume 53