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Backgrounds
A cow is typically milked two or more times each day during 

her lactation, and not all those milkings are weighed or 
sampled.

 The initial morning (AM)-evening (PM) milking plan alternately 
sampled AM or PM milking on test day throughout the 
lactation. Daily yield (milk, fat, and protein) was estimated by 
two times sampled AM or PM yield on each test day, 
assuming equal AM and PM milking intervals (Porzio, 1953). 

However, AM and PM milking intervals can vary, and milk 
secretion rates may be different between day and night 
(Everrett and Wadell,1970a,b). 
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Yield correction factors
Various methods have been proposed focusing on additive (∆) 

and multiplicative (F) correction factors

3



4

Goals

Re-evaluate the performance of existing statistical 

models, compared to the recently proposed 

exponential regression model, using cross-

validation. 

Characterize ACF and MCF obtained from various 

methods



Additive correction factor (ACF) models
 Regression with categorical variables (Everett and Wadell, 

1970)

 A general form:

𝑦𝑦 = 𝑓𝑓 𝜃𝜃 + 𝑏𝑏𝑏𝑏 + 𝜖𝜖
where 𝑓𝑓 𝜃𝜃 is a function with categorical or/and continuous 
dependent variables.
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𝑏𝑏𝐴𝐴𝐴𝐴 − 𝑏𝑏𝑃𝑃𝐴𝐴 = 𝑓𝑓 𝜃𝜃 + ϵ

�𝑦𝑦 = 𝑓𝑓 �̂�𝜃 + 2𝑏𝑏𝑃𝑃𝐴𝐴



ACF evaluated for each MIC, say k
Regression with categorical variables, say MIC

∆𝑗𝑗
(𝑘𝑘)= 𝐸𝐸 𝑓𝑓 𝜃𝜃|𝑗𝑗,𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑘𝑘, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

where else = all categorical variables where applicable

Regression model on discretized milking interval

∆𝑗𝑗
(𝑘𝑘)= �𝛼𝛼𝑗𝑗 + �̂�𝛽 ̅𝑡𝑡𝑗𝑗

(𝑘𝑘)
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Multiplicative correction factor (MCF) models
 Shook et al. (1980)

𝐴𝐴𝑀𝑀𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑃𝑃+𝑃𝑃𝐴𝐴𝑃𝑃
𝐴𝐴𝐴𝐴𝑃𝑃

; 𝑃𝑃𝑀𝑀𝐴𝐴 = 𝐴𝐴𝐴𝐴𝑃𝑃+𝑃𝑃𝐴𝐴𝑃𝑃
𝑃𝑃𝐴𝐴𝑃𝑃

 DeLorenzo and Wiggans (1980)

𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 = 𝐴𝐴𝑗𝑗𝑘𝑘𝑏𝑏𝑖𝑖𝑗𝑗𝑘𝑘 + 𝛾𝛾𝑗𝑗𝑘𝑘 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘 − �̅�𝑑𝑗𝑗𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘

 Wiggans (1986)

𝑥𝑥𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖

= 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑗𝑗 + 𝛾𝛾 𝑑𝑑𝑖𝑖𝑗𝑗 − �̅�𝑑𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗

 Assuming E 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘 − �̅�𝑑𝑗𝑗𝑘𝑘 = 0 and 
𝐸𝐸 𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘 = 0

𝐴𝐴𝑖𝑖𝑗𝑗𝑘𝑘 = 𝐸𝐸 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

=
∑𝑖𝑖=1
𝑛𝑛 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

∑𝑖𝑖=1
𝑛𝑛 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

 Applying first-order Taylor 
approximation

E 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

= 𝐸𝐸 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

 MCF computed for MIC k, 
assuming E 𝑑𝑑𝑖𝑖𝑗𝑗𝑘𝑘 − �̅�𝑑𝑗𝑗𝑘𝑘 = 0
and 𝐸𝐸 𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘 = 0

𝐴𝐴𝑗𝑗
(𝑘𝑘) = 1

�𝛼𝛼𝑖𝑖+�𝛽𝛽�̅�𝑡𝑖𝑖
(𝑖𝑖)
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Challenges: ACF models
 For regression with discrete MIC, the number of MIC coupled with other categorical 

variables increased substantially as more variables were considered.
 For example, consider twenty MIC, four herd location regions, four years, four seasons, and 

two parities. Then, there would be 20 × 4 × 4 × 4 × 2 = 2,560 specific classes for which ACF 
would need to be estimated while considering all these categorical variables at the same time. 

 For regression with continuous milk interval, systematic biases arose from discretizing 
milking interval.

∆𝑗𝑗
(𝑘𝑘)= 𝐸𝐸 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑗𝑗

(𝑘𝑘) = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝐸𝐸 ̅𝑡𝑡𝑗𝑗
(𝑘𝑘) + 𝑡𝑡𝑖𝑖𝑗𝑗

(𝑘𝑘) − ̅𝑡𝑡𝑗𝑗
(𝑘𝑘) = 𝛼𝛼𝑗𝑗 + 𝛽𝛽 ̅𝑡𝑡𝑗𝑗

(𝑘𝑘) + 𝛽𝛽𝐸𝐸 𝑡𝑡𝑖𝑖𝑗𝑗
(𝑘𝑘) − ̅𝑡𝑡𝑗𝑗

(𝑘𝑘)

= 𝛼𝛼𝑗𝑗 + 𝛽𝛽 ̅𝑡𝑡𝑗𝑗
(𝑘𝑘)

The above holds assuming 𝐸𝐸 𝑡𝑡𝑖𝑖𝑗𝑗
(𝑘𝑘) − ̅𝑡𝑡𝑗𝑗

(𝑘𝑘) = 𝐸𝐸 𝑡𝑡𝑖𝑖𝑗𝑗
(𝑘𝑘) − ̅𝑡𝑡𝑗𝑗

𝑘𝑘 = 0.
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Challenges: MCF models
 An MCF model is challenged by the “ratio” problem because each has 

a ratio dependent variable in the data density or smoothing function.
 Shook et al. (1980)

𝑃𝑃𝐴𝐴𝑃𝑃2𝑖𝑖
𝐴𝐴𝐴𝐴𝑃𝑃2𝑖𝑖+𝑃𝑃𝐴𝐴𝑃𝑃2𝑖𝑖

= 𝛼𝛼 + 𝛽𝛽1𝑡𝑡𝑘𝑘 + 𝛽𝛽2𝑡𝑡𝑘𝑘2 + 𝜖𝜖𝑘𝑘; 𝐴𝐴𝑀𝑀𝐴𝐴2𝑘𝑘 = 1
�𝛼𝛼+�𝛽𝛽1 ̅𝑡𝑡𝑖𝑖+�𝛽𝛽2 ̅𝑡𝑡𝑖𝑖

2

 DeLorenzo and Wiggans
1

𝐹𝐹𝑖𝑖
(𝑖𝑖) = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑗𝑗 ̅𝑡𝑡𝑗𝑗𝑘𝑘 + 𝜖𝜖𝑗𝑗𝑘𝑘; 𝐴𝐴𝑗𝑗

𝑘𝑘 = 1
�𝛼𝛼𝑖𝑖+�𝛽𝛽�̅�𝑡𝑖𝑖

𝑖𝑖

 Wiggans (1986)
𝑥𝑥𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖

= 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑗𝑗 + 𝛾𝛾 𝑑𝑑𝑖𝑖𝑗𝑗 − �̅�𝑑𝑗𝑗 + 𝜖𝜖𝑖𝑖𝑗𝑗;  𝐴𝐴𝑗𝑗
𝑘𝑘 = 1

�𝛼𝛼𝑖𝑖+�𝛽𝛽�̅�𝑡𝑖𝑖
𝑖𝑖 ; 

�𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑏𝑏𝑖𝑖𝑗𝑗 ∗ 𝐴𝐴𝑗𝑗
𝑘𝑘 + �𝛾𝛾 𝑑𝑑𝑖𝑖𝑗𝑗 − �̅�𝑑𝑗𝑗
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Challenges: The “ratio” problem
 Bias due to dropping (or missing) main effect 

variables
𝑦𝑦
𝑥𝑥

= 𝛼𝛼 + 𝛽𝛽𝑡𝑡 + 𝜖𝜖

y = 𝛼𝛼𝑏𝑏 + 𝛽𝛽𝑡𝑡𝑏𝑏 + 𝜖𝜖𝑏𝑏
 Bias due to additional measurement errors (𝛿𝛿)

𝑦𝑦
𝑥𝑥+𝛿𝛿

= 𝛼𝛼 + 𝛽𝛽𝑡𝑡 + 𝜖𝜖

𝑦𝑦
𝑥𝑥

= 𝛼𝛼 + 𝛽𝛽𝑡𝑡 + 𝜖𝜖 + 𝛼𝛼 𝛿𝛿
𝑥𝑥

+ 𝛽𝛽 𝑡𝑡𝛿𝛿
𝑥𝑥

+ 𝜖𝜖𝑖𝑖𝑗𝑗
𝛿𝛿
𝑥𝑥
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An exponential regression model
 Again, consider milking interval and days in milk (Wu et al., 2022)

𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑏𝑏𝑖𝑖𝑗𝑗𝑏𝑏 𝑒𝑒 𝛼𝛼𝑖𝑖+𝛽𝛽𝑡𝑡𝑖𝑖+𝛾𝛾 𝑑𝑑𝑖𝑖𝑖𝑖− �𝑑𝑑𝑖𝑖 +𝜖𝜖𝑖𝑖𝑖𝑖

 Logarithm transformation

𝑒𝑒𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖𝑗𝑗 = 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑡𝑡𝑗𝑗 + 𝛾𝛾 𝑑𝑑𝑖𝑖𝑗𝑗 − �𝑑𝑑𝑗𝑗 + 𝑏𝑏𝑒𝑒𝑙𝑙𝑙𝑙(𝑏𝑏𝑖𝑖𝑗𝑗) + 𝜖𝜖𝑖𝑖𝑗𝑗
 Analogous to exponential growth function

𝑦𝑦𝑖𝑖𝑗𝑗 ≈ 𝑏𝑏𝑖𝑖𝑗𝑗𝑏𝑏 1 + 1.718 𝛼𝛼𝑖𝑖+𝛽𝛽𝑡𝑡𝑖𝑖+𝛾𝛾 𝑑𝑑𝑖𝑖𝑖𝑖− �𝑑𝑑𝑖𝑖 +𝜖𝜖𝑖𝑖𝑖𝑖

11



Estimating daily milk yield
Direct approach

�𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑏𝑏𝑖𝑖𝑗𝑗
�𝑏𝑏 𝑒𝑒 �𝛼𝛼𝑖𝑖+�𝛽𝛽𝑡𝑡𝑖𝑖+�𝛾𝛾 𝑑𝑑𝑖𝑖𝑖𝑖− �𝑑𝑑𝑖𝑖

 Indirect approach (via MCF)
�𝑦𝑦𝑖𝑖𝑗𝑗 = 𝑏𝑏𝑖𝑖𝑗𝑗

(𝑘𝑘) × 𝐴𝐴𝑗𝑗
(𝑘𝑘)

𝐴𝐴𝑗𝑗
(𝑘𝑘) =

𝐸𝐸 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖)

𝐸𝐸 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖) = 𝜌𝜌𝑗𝑗

(𝑘𝑘) �̅�𝑏𝑗𝑗
(𝑘𝑘) 𝑏𝑏−1

𝑒𝑒𝛼𝛼𝑖𝑖+𝛽𝛽�̅�𝑡𝑖𝑖
(𝑖𝑖)+𝛾𝛾 𝑑𝑑𝑖𝑖𝑖𝑖− �𝑑𝑑𝑖𝑖

(𝑖𝑖)

where: 𝜌𝜌𝑗𝑗
(𝑘𝑘) = 𝑒𝑒

1
2 𝑉𝑉 𝑦𝑦𝑖𝑖𝑖𝑖

(𝑖𝑖) �𝑦𝑦𝑖𝑖
(𝑖𝑖) −2

−𝑏𝑏𝑉𝑉 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖) �̅�𝑥𝑖𝑖

(𝑖𝑖) −2
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A simulation study
 Daily milk yields were simulated based on a modified Michael-

Menten function (Klopcic et al., 2012), where 𝑦𝑦720~𝑇𝑇𝑇𝑇 12,2 and 

𝑘𝑘~𝑇𝑇𝑇𝑇 0.8,0.1 . 

 Thirty replicates were simulated; Each replicate consists of 3,000 

cows; 2/3 for training and 1/3 for testing

 The performance (accuracy and decomposed MSE) for eight 

methods were evaluated by 10-fold cross-validation. 
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Mean and 95% confidential intervals of daily milk 
yield and frequency distribution of AM (PM) milking 
intervals. 
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Decomposed MSE and 
Accuracy
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Comparing model parameters

16



Additive correction factors

17



Multiplicative correction factors
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Conclusions
 Doubling AM (PM) milk yields was approximately taken with equal AM and PM milking 

intervals, but it was subject to large errors with unequal milking intervals. In contrast, 
the use of ACF and MCF has effectively reduced the biases due to unequal milking 
intervals. 

 All the methods had high precision but they differ considerably in the  accuracy of 
estimates. Comparably speaking, MCF and linear regression models had smaller MSE 
and higher accuracy than ACF.

 The exponential regression models had the smallest MSE and the greatest accuracies 
of all the model evaluated, thus providing a promising alternative tool for estimating 
DMY.

 The methods were presented with the simulated AM and PM milking data, yet the 
principles are generally applicable to cows milked more than two times a day, and they 
apply to the estimation of daily fat and protein yields. 19



Comments and 
questions?
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