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Backgrounds

J A cow is typically milked two or more times each day during
her lactation, and not all those milkings are weighed or
sampled.

J The initial morning (AM)-evening (PM) milking plan alternately
sampled AM or PM milking on test day throughout the
lactation. Daily yield (milk, fat, and protein) was estimated by
two times sampled AM or PM yield on each test day,
assuming equal AM and PM milking intervals (Porzio, 1953).

J However, AM and PM milking intervals can vary, and milk
secretion rates may be different between day and night

C[(E/Brrett and Wadell,1970a,b).
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Yield correction factors

o

J Various methods have been proposed focusing on additive (A)
and multiplicative (F) correction factors
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Goals

JRe-evaluate the performance of existing statistical
models, compared to the recently proposed
exponential regression model, using Cross-

validation.

JCharacterize ACF and MCF obtained from various
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Additive correction factor (ACF) models

J Regression with categorical variables (Everett and Wadell,

) — xpy = f(0) + €
RS

J A general form:

y=/f(0)+bx+c¢€
where f(60) is a function with categorical or/and continuous
dependent variables.
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ACF evaluated for each MIC, say k

J Regression with categorical variables, say MIC

A;k)= E(f(6]j,MIC = k, else))

where else = all categorical variables where applicable

J Regression model on discretized milking interval

A9 = g, + pE®
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Multiplicative correction factor (MCF) models

J Shook et al. (1980)

AMP '’ PMP

J Delorenzo and Wigga

Viik = FieXijre + Vie(diji

xij

—L = a; + Bt;; +y(di; — d;) + €

AMF — AMP+PMP PMF — AMPA+PMP e o
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Yij \
(k) _ 1
f

v' Assuming E(d;;; — djx) = 0 and
E(gijk) = ()

_ E(yijr) _ Tiavijk

U B () X xijk

v Applying first-order Taylor

approximation

— Czjk) + gijk4_E (yijk) _ E(Yijk)

Xijk E(xl]k)

J Wiggans (1986) v" MCF computed for MIC k,
assuming E(d;jx — djx) = 0

and E(gijk) =0

k
a]+,8t( ) -
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J For regression with discrete MIC, the number of MIC coupled with other categorical

Challenges: ACF models

variables increased substantially as more variables were considered.

v" For example, consider twenty MIC, four herd location regions, four years, four seasons, and
two parities. Then, there would be 20 x4 x 4 x 4 x 2 = 2,560 specific classes for which ACF
would need to be estimated while considering all these categorical variables at the same time.

J For regression with continuous milk interval, systematic biases arose from discretizing
milking interval.

AO=E (a; +pt)) = a; + ﬁE( £ + (£ - ‘].(’0)) = + BE + BE (7 — )

= a; + ﬁt(k)

The above holds assuming E (ti(]'.‘) — Ej(k)) =E ( (Jk)) — Ej(k) = 0.
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Challenges: MCF models

J An MCF model is challenged by the “ratio” problem because each has
a ratio dependent variable in the data density or smoothing function.

J Shook et al. (1980)

PMP,j, . 2 _ - 1

AMP, +PMP,, t Bitic + Patic + €; AMFy = a+pPitx+Pat;

J DelLorenzo and Wiggans
1 - . (k) 1

—= =a; + pitix + €ip; F;T = ——

70— % Bitik + €k £ ARG
J Wiggans (1986)

Xij 7 . (K L

=qa; +pt;; +y(d; —d;) + €5 F =——4:

i I Btij +v(dy — d;) + € @+ BE®

. k) o A -
Vij = Xij * Fj( " 7(dij — dj)
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Challenges: The “ratio” problem

] Bias due to dropping (or missing) main effect
variables

%za@ﬁt+e

y = ax + ftx + €x

] Bias due to additional measurement errors (6)
y

-y =+ ft t+e€

) ) )
X=(a+ﬁt+e)+(a;+ﬁ%+eij )

X
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An exponential regression model

J Again, consider milking interval and days in milk (Wu et al., 2022)

Vi = xll?je(“j+ﬁtj+y(dij—5j)+€ij)

J Logarithm transformation

lag(yij) =a; + ft; + y(dij — c_ij) + blog(x;;) + €;;
J Analogous to exponential growth function

yij = xZ(1 + 1.718)4*Fti+v(di=dj)+ey
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Estimating daily milk yield

J Direct approach
571-]- — x?je(aj+ﬁtj+?(dij_dj))

J Indirect approach (via MCF)

A~ k k
9y = x5 £

X -

g _ E(v;”) _ (k) (_(k))b—l e“f+ﬁt( )y (djpe-a®

o E(x.(’.“)) — P j

i]
—2
where: p]( ) = ez( i)(37) by (x;
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A simulation study

J Daily milk yields were simulated based on a modified Michael-
Menten function (Klopcic et al., 2012), where y-,,~TN(12,2) and
k~TN(0.8,0.1).

J Thirty replicates were simulated; Each replicate consists of 3,000

cows; 2/3 for training and 1/3 for testing

J The performance (accuracy and decomposed MSE) for eight

methods were evaluated by 10-fold cross-validation.
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Mean and 95% confidential intervals of daily milk e
vield and frequency distribution of AM (PM) milking
Intervals.
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Decomposed MSE and @ ICAR«2022 g
Accuracy
Models Variance Bias“ MSE Accuracy
M1 4.90E-04 0.486 0.486 0.968
M2A 7.40E-05 0.448 0.448 0.971
M2B 7.50E-05 0.480 0.480 0.968
M3A 7.40E-05 0.435 0.435 0.972
M3B 7.40E-05 0.465 0.465 0.970
M4 4.60E-04 0.422 0.422 0.972
M5 4.30E-04 0.420 0.421 0.972
MO6A 5.90E-05 0.386 0.386 0.975
M6B 5.90E-05 0.417 0.417 0.973
MT7A 5.90E-05 0.376 0.376 0.976
M7B 7.60E-05 0.385 0.385 0.975
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Comparing model parameters

&

Statistical Model parameters
models Ny X ppg B b Linear regression fit Correlation
M2A 14.17 14.19 -1.182 2.0 AM:y = 0.822 + 0.966 ¥y 0.985
(0.095) (0.095) (0.008) -— PM:y = 0.580 + 0.976 ¥ 0.985
M3A 14.46 14.48 -1.147 1.942 AM:y = 0.123 + 0.995 ¥ 0.986
(0.096) (0.096) (0.008) (0.004) PM:y = —0.126 + 1.005 ¥ 0.985
M6A 0.208 0.208 0.024 -—- AM:y = 0.684 + 0.972 y 0.986
(0.002) (0.002) (<0.001) — PM:y = 0577 + 0976 ¥ 0.986
M7A 1.324 1.324 -0.048 0.977 AM:y = 0.102 + 0.996 y 0.988
(0.005) (0.005) (<0.001) (0.002) PM:y 0.009 +1.001 ¥ 0.987
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Additive correction factors
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Multiplicative correction factors
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Conclusions

J Doubling AM (PM) milk yields was approximately taken with equal AM and PM milking
intervals, but it was subject to large errors with unequal milking intervals. In contrast,

the use of ACF and MCF has effectively reduced the biases due to unequal milking
intervals.

d All the methods had high precision but they differ considerably in the accuracy of

estimates. Comparably speaking, MCF and linear regression models had smaller MSE
and higher accuracy than ACF.

d The exponential regression models had the smallest MSE and the greatest accuracies

of all the model evaluated, thus providing a promising alternative tool for estimating
DMY.

J The methods were presented with the simulated AM and PM milking data, yet the

C les are generally applicable to cows milked more than two times a day, and they
CCCCCCCCC % o the estimation of daily fat and protein yields. 19




CCCCCCCCCCCCCCCCCCCCCCCCCCCC

Comments and
questions?
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