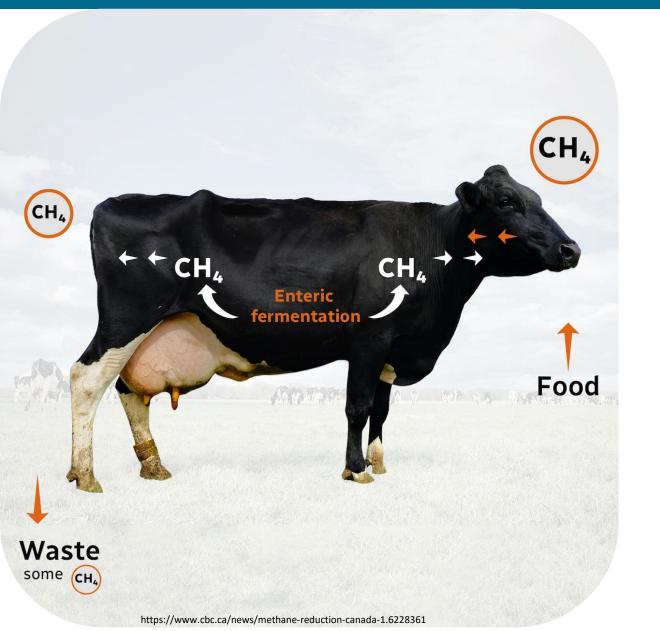


ICAR 2022 - Montreal May 30th - June 3rd

Estimates of genetic parameters for environmental efficiency traits for first lactation Holsteins

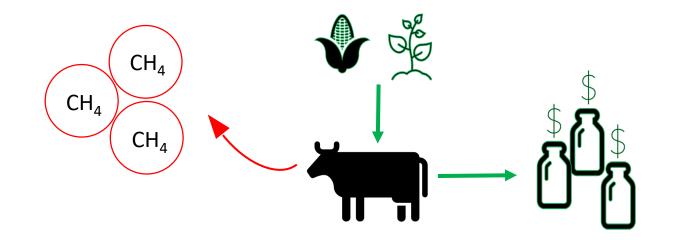
L.S.F. Lopes¹, K. Houlahan¹, F.S. Schenkel¹, D. Tulpan¹, F. Miglior^{1,2}, M. Sargolzaei^{3,4}, J.E. Koltes⁵, & C.F. Baes^{1,6}

¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, N1G 2W1, Guelph, Ontario, Canada ²Lactanet, N1K 1E5, Guelph, Ontario, Canada ³Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada ⁴Select Sires Inc, 43064, Plain City, Ohio, United States of America ⁵Department of Animal Science, Iowa State University, 50011-3150, Ames, Iowa, United States of America ⁶Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland



IMPROVE LIFE.

Background



• Livestock = 14% of global GHG emissions (Gerber et al., 2013)

Enteric methane (CH₄) = 6%
 of global GHG emissions
 (Gerber et al., 2013)

3

Background

lower emissions = higher efficiency

Gas = 10% loss of dietary energy (de Haas et al., 2011)

- Excessive gas means low efficiency
- Impacts profitability

Complexity of measuring

- Methane and feed efficiency
- Lower methane = sustainability

Indicator traits

- Indirect selection/progress of target traits
- Need to be heritable and genetically correlated

Rumination time as candidate

Rumination related to:

- Feeding behaviour (intake and digestion)
- Ruminal fermentation (gas production)

Automatically recorded rumination time (RT)

- Health (Soriani et al., 2012)
- Reproduction (Reith & Hoy, 2012)
- **Production** (Kaufman et al., 2018)

ps://www.profitablemilk.com/w

Evaluate the use of automatically recorded rumination time as an indicator of efficiency and sustainability by:

Estimating heritability

Genetic correlations:

- Rumination Time
- Methane emission
- Feed efficiency
- Production

Material and Methods

Ontario Dairy Research Centre 656 first lactation Holstein cows

Phenotypes

- Rumination time (RT): minutes/day (Allflex[®])
- Methane (CH₄): g/day (GreenFeed[®])
- Methane yield (MeY): CH₄/DMI
- Methane intensity (MeI): CH₄/ECM
- Feed efficiency (FE): phenotype from genetic covariances (DMI, ECM and MBW)
- Energy corrected milk (ECM): 0.25 x milk + 12.2 x fat + 7.7 x protein
- MBW: body weight^{0.75}

Model

$$Y_{ijklm} = \mu + AC_i + WL_j + YS_k + a_l + pe_m + e_{ijklm}$$

Where:

- Y_{ijklm} = phenotype
- μ = overall mean of the trait
- AC_i = fixed effect of age at calving (eight levels)
- WL_i = fixed effect of the week of lactation (thirteen levels)
- YS_k = fixed effect of the year and season of calving (sixteen levels)
- a_l = random additive genetic effect
- pe_m = random permanent environmental effect (for FE, DMI, ECM, and MBW)
- e_{ijklm} = random residual error term

Heritabilities on the diagonal, and genetic correlations above the diagonal

	RT	CH ₄	MeY	Mel	FE	DMI	ECM	MBW
RT (min/day)	0.48 (0.14)	-0.45(0.25)	NA	-0.88 (0.24)	-0.08 (0.19)	0.17 (0.14)	0.48 (0.12)	-0.24 (0.13)
CH ₄ (g/day)		0.42 (0.12)	0.85 (0.50)	0.48 (0.23)	0.13 (0.18)	0.81 (0.10)	0.76 (0.14)	0.67 (0.10)
MeY (g/kg)			0.12 (0.10)	0.84 (0.62)	-0.91 (0.24)	-0.92 (0.12)	-0.37 (0.29)	0.04 (0.29)
Mel (g/kg)				0.36 (0.13)	0.04 (0.22)	-0.17 (0.16)	-0.81 (0.08)	0.66 (0.13)
FE (kg)					0.13 (0.07)	0.69 (0.14)	-0.06 (0.29)	-0.08 (0.30)
DMI (kg)						0.24 (0.07)	0.56 (0.17)	0.40 (0.21)
ECM (kg)							0.32 (0.07)	-0.01 (0.21)
MBW (kg ^{0.75})								0.44 (0.11)

CH4 Mel FE DMI ECM RT (min/d) -0.45(0.25) -0.88 (0.24) -0.08 (0.19) 0.17 (0.14) 0.48 (0.12)

RT for lowering emission per kg of milk

- Increase in intake
- Physiological limit with intake

FE DMI ECM Mel (g/kg) 0.04 (0.22) -0.17 (0.16) -0.81 (0.08)

Lower methane intensity

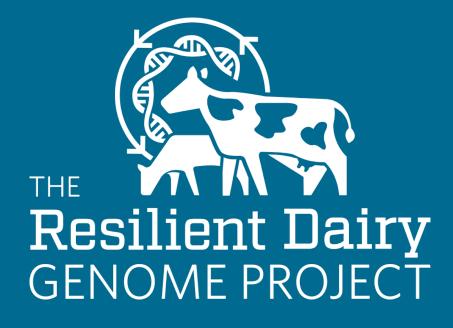
- Higher intake
- Higher production
- Same efficiency

Conclusions

Rumination time was heritable

Increase in rumination time was correlated with:

- Decrease in methane emissions
- Increase in milk production


More studies are necessary to validate these findings

Acknowledgements

Thanks

Lucas Lopes llopes@uoguelph.ca