

Modelling metabolic efficiency Do we need to understand the biological meaning of residual feed intake breeding values?

M.H. Lidauer¹, T. Andersen², U.S. Nielsen², E.A. Mäntysaari^{1*}, G.P. Aamand³

¹Natural Resources Institute Finland (Luke), Jokioinen, Finland

²SEGES Innovation P/S, Aarhus N, Denmark

³Nordic Cattle Genetic Evaluation, Aarhus N, Denmark

Residual feed intake (RFI)

- Models by its definition (intake expected intake) the metabolic efficiency in a broad sense that captures variation due to:
 - ability to digesting feed
 - ability to have low energy loss through CH₄ exhalation
 - ability to utilize metabolizable energy for the different energy pathways
- intake: usually measurements for dry matter intake
- expected intake: through modelling of intake requirements for energy sinks (usually by partial regression analyses)

Residual feed intake for Nordic Total Merit Index

- Implemented into Nordic Total Merit in 2020
- Since then, more data is added (CFIT data)
- Along this we have recognized:
 - Partial regression coefficients may vary significantly across time and parities
 - For both CFIT data and research farm data

Aim of the study

Attempt to understand metabolic efficiency

Objective

Study different modelling approaches

Data from 4 herds with CFIT feed intake

- 46,822 weekly records
- 1st to 6th parity
- 1,211 Jersey cows with records
- Years: 2019, 2020, 2021

Means of daily observations

	First parity	Later parities
N	18,221	28,588
DMI	21.3	24.5
MBW	95.0	103.3
ECM	28.9	37.1
MY	22.0	28.5
FY	1.3	1.7
PY	1.0	1.2

DMI = dry matter intake [kg] $MBW = metabolic body weight [kg^{0.75}]$ ECM = energy corrected milk [kg]

MY = milk yield [kg]

FY = fat yield [kg]

PY = protein yield [kg]

A: Currently used RFI model (RFI_partial_regressions)

First step:

a) partial regression analyses of dry matter intake (DMI)

$$DMI = c_1 \times A + c_2 \times A^2 + LP + LYS + HYS + \gamma_1 \times ECM + \gamma_2 \times MBW + \gamma_3 \times \Delta BW + rfi$$
 where

- partial regressions nested within LP classes
- A = calving age
- LP = lactation month x parity classes
- LYS = lactation x year x season
- HYS = herd x year x season
- b) raw rfi values adjusted for heterogeneous variance
- c) RFI observation = rfi* + estimates for LYS and HYS

A: Currently used RFI model (RFI_partial_regressions)

Second step:

estimating breeding values by a repeatability animal model:

$$RFI = LYS + HYS + pe + a + e$$

where

- LYS = lactation x year x season
- HYS = herd x year x season
- pe = random permanent environmental effect
- a = random additive genetic effect
- e = random residual

B: Regression on requirements (RFI_reg_on_requirement)

• Same as approach A but step 1 model was modified:

$$DMI = c_1 \times A + c_2 \times A^2 + LP + LYS + HYS + \phi \times eDMI + rfi$$

regression on expected dry matter intake (eDMI) instead of partial regressions

eDMI: firstly calculating energy requirements (ER) in mega joule (MJ):

$$ER \ [MJ/day] = 4.81 \times ECM + 0.603 \times MBW - 27.6 \times BW_Loss + 38.3 \times BW_Gain$$
 (based on Agnew et al., 2003)

and subsequently:

 $eDMI = ER \times average of [DMI kg / (MJ/day)]$

C: Requirements RFI (RFI_requirements)

Same as approach A but the raw rfi observations in step 1 were calculated as:

$$rfi = DMI - eDMI$$

D: Regression on expected feed intake (ReFI)

- A different approach where feed intake is regressed on expected feed intake
- Covariables for expected feed intake are calculated using energy requirement estimates from dairy cow nutrition studies
- Allows to model metabolic efficiency from a biological perspective

D: Regression on expected feed intake (ReFI)

• DMI was modelled by a random regression model:

$$DMI = \beta \times eDMI + \eta \times eDMI + \psi \times eDMI + \alpha \times eDMI + \epsilon$$

with fixed regression coefficients

 β nested within herd \times year \times parity classes

and random regression coefficients

 η nested within herd \times year \times month classes

ψ nested within animal permanent environmental effect

 α nested within additive genetic animal effect

Results

- Variance components for different approaches
- Genetic correlations between metabolic efficiency and yield traits (multivariate analyses of first parity yield deviations)
- Quick look on phenotype means of 10% genetically superior cows (cows selected alternatively based on the 4 different sets of EBV)

Results: Estimates of regression coefficients

	RFI_pa	rtial_regr	essions	RFI_regression_on _requirement	ReFI
Covariables	ECM	MBW	ΔBW	eDMI	eDMI
Coefficient	γ ₁	γ ₂	γ ₃	φ	β
First parity estimates	0.31	0.159	-0.28	0.46	1.04
Later parities estimates	0.18	0.196	-0.24	0.32	1.01
Biological expectation	0.49	0.062	3.91	1.00	1.00

Results: Heritability and genetic correlations with yield traits

Approach	h²	Genetic correlations to:				
		Milk yield	Fat yield	Protein yield		
RFI_partial_regressions	0.14	0.47	0.17	0.31		
RFI_regression_on_requirement	0.16	0.43	0.24	0.30		
RFI_requirement	0.10	-0.01	-0.20	-0.16		
ReFI	0.10	0.02	-0.28	-0.10		

positive correlation: unfavourable negative correlation: favourable

Results: Phenotypic means of superior cows

10% best cows based on the EBV by different approaches

Approach		DMI	MBW	ECM	MY	FY	PY	FCE
All cows		21.2	94.9	28.7	21.8	1.30	0.946	1.35
10% best cows	RFI_partial_regressions	18.6	94.7	26.3	18.8	1.22	0.860	1.41
	RFI_regression_on_requirement	18.4	92.8	25.3	18.3	1.17	0.833	1.38
	RFI_requirement	19.9	93.1	29.1	21.5	1.34	0.966	1.46
	ReFI	19.8	93.9	29.8	22.0	1.37	0.982	1.51

DMI = dry matter intake [kg] MBW = metabolic body weight [kg^{0.75}] ECM = energy corrected milk [kg]

MY = milk yield [kg] FY = fat yield [kg] PY = protein yield [kg] FCE = ECM/DMI

Conclusions

- Currently used RFI model favours cows with low production
- ReFI (regression on expected feed intake) favours cows with high production and high efficiency
- Poor performance of the RFI model was due to the inability of the RFI model to properly estimate the partial regression coefficients for the energy sinks

Thank you!

Innovation Fund Denmark

