Alternative Residual Feed Intake (RFI) Expressions in Dairy Cattle

J. Jamrozik1,2 and P.G. Sullivan1
1Lactanet Canada, Guelph, ON, Canada,
2CGIL, University of Guelph, Guelph, ON, Canada
Residual Feed Intake (Koch et al., 1963)

- Residuals from linear regression of feed intake (DMI) on various energy sinks (ECM, MBW) expressed on the phenotypic scale
 \[\text{DMI}_i = \mathbf{x}_i' \mathbf{b} + \lambda_{\text{ECM}} * \text{ECM}_i + \lambda_{\text{MBW}} * \text{MBW}_i + e_i \]
- Estimates of regression coefficients \(\lambda_{\text{ECM}} \) and \(\lambda_{\text{MBW}} \) are obtained by LS and phenotypes for RFI \((e_i) \) are subsequently used as observations in genetic/genomic evaluation model
Residual Feed Intake (Kennedy et al., 1993)

- Alternatively, and equivalently, λ_{ECM} and λ_{MBW} can be derived as partial regression coefficients from phenotypic co-variances among DMI and the energy sinks.
- Define $\mathbf{C} = \begin{bmatrix} C_{ij} \end{bmatrix}$ (2x2) phenotypic co-variance matrix for ECM and MBW, $\mathbf{w} = \begin{bmatrix} w_{ij} \end{bmatrix}$ vector of phenotypic co-variances between sinks and DMI. Then

$$\begin{bmatrix} \lambda_{ECM} & \lambda_{MBW} \end{bmatrix}' = \mathbf{C}^{-1} \mathbf{w}$$
Residual Feed Intake (Lu et al., 2015)

Challenges of using phenotypes for RFI from LS for genetic analyses:

• RFI is not an observable trait

• All covariates (energy sinks) are incorrectly assumed to have no measurement errors

• Impossible to calculate RFI if any sink is missing

• Any genetic or residual correlation between DMI and energy sinks will affect heritability estimate for RFI and interpretation of inferences
Use of Mixed Model Methods for RFI

• EBVs for RFI can be obtained w/o directly using phenotypes for RFI

• Multiple-Trait (MT) model for ECM, MBW and DMI

\[y_i = X b + a_i + p_i + e_i, \text{ with} \]

\[\nu(a_i) = G \] - genetic covariance matrix
\[\nu(p_i) = E \] - covariance matrix for the PE effects
\[\nu(e_i) = R \] - residual covariance matrix

\[P = G + E + R \] - phenotypic co-variance matrix
Use of Mixed Model Methods for RFI

• Let $\mathbf{a} = [a_{ECM}, a_{MBW}, a_{DMI}]'$ be EBVs for DMI and sinks

• Then $\mathbf{a}^* = [a_{ECM}, a_{MBW}, a_{RFI}]' = \Lambda_p \mathbf{a} = $ $\Lambda_p = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\lambda_{ECM} & -\lambda_{MBW} & 1 \end{bmatrix} $

$\lambda_X =$ partial phenotypic regression coefficient (derived from MT estimate of P) of DMI on X (energy sink)
Recursive Model Approach for RFI

\(Y_1, Y_2, \) and \(Y_3 \) - phenotypes for ECM, MBW and DMI

Recursive Model (RM) equations:

\[
Y_1 = \text{fixed}_1 + \text{random}_1 + e_1 \\
Y_2 = \text{fixed}_2 + \text{random}_2 + e_2 \\
Y_3 = \lambda_{31} \cdot Y_1 + \lambda_{32} \cdot Y_2 + \text{fixed}_3 + \text{random}_3 + e_3 \\
\]

\(\lambda_{jk} = \) recursive coefficient parameter for the effect of change in trait j caused by the phenotype of trait k
Mixed linear RM for ECM, MBW and DMI:

\[\Lambda y_i = X b^* + a_i^* + p_i^* + e_i^*, \text{ with} \]

\[a_i^* = \Lambda a_i \]

\[\nu(a_i^*) = \Lambda G \Lambda' \]
\[\nu(p_i^*) = \Lambda E \Lambda' \]
\[\nu(e_i^*) = \Lambda R \Lambda' \]

\[P^* = G^* + E^* + R^* \]

RM for ECM, MBW and DMI + restrictions on certain RM parameters = MT model for these traits
Restrictions on phenotypic co-variances i.e. setting $p_{13}^* = p_{23}^* = 0$ of the co-variance matrix \mathbf{P}^* of RM will yield the same estimates of partial regression coefficients as shown in the simple re-parametrization of the EBVs from the MT model.

Given the estimates of partial regression coefficients and the known co-variance structure of the model, EBV for RFI can be derived using estimates of EBV for DMI and sinks from a regular MT model for these traits.
Alternative RFI Definitions

- **pRFI** - RFI defined on the phenotypic level (feed intake phenotypically independent of energy sinks)

- This can be extended to other random variables affecting DMI, leading to different definitions with different interpretation of RFI:
 - **Genetic RFI (gRFI)** - feed intake genetically independent of energy sinks
 - **PE RFI (eRFI)** - feed intake adjusted for systematic environmental effects on repeated measurements for an animal over time
 - **Residual RFI (rRFI)** - feed intake adjusted for all effects in the model
Different expression of RFI = partial regression coefficients (recursive model restrictions) for different source of variability for DMI and energy sinks (G, P, E, R)

EBV and co-variance components for specific RFI derived using

- pRFI: Λ_P
- gRFI: Λ_G
- eRFI: Λ_E
- rRFI: Λ_R

with the same structure as shown earlier for Λ_P
Example of Application

- 1st lactation Feed Efficiency model for Canadian Holsteins
- International data: 7 EDGP + 8 USA herds (6 countries)
- Linear animal MT model for 6 traits: ECM, MBW and DMI in 5 – 60 and 61 – 305 DIM
- Random effects:
 - Additive genetic (G), Perm. Env. (E), Residual (R)
- MC-EM-REML (MiX99 software)
- Four different RFI expressions in 61- 305 DIM: pRFI, gRFI, eRFI, rRFI
Regression Coefficients: DMI on Energy Sinks

- Regression coefficients:

<table>
<thead>
<tr>
<th></th>
<th>gRFI</th>
<th>pRFI</th>
<th>eRFI</th>
<th>rRFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>0.48</td>
<td>0.31</td>
<td>0.28</td>
<td>0.19</td>
</tr>
<tr>
<td>MBW</td>
<td>0.14</td>
<td>0.13</td>
<td>0.11</td>
<td>0.15</td>
</tr>
</tbody>
</table>

- Relative impact (%) of ECM versus MBW:

<table>
<thead>
<tr>
<th></th>
<th>gRFI</th>
<th>pRFI</th>
<th>eRFI</th>
<th>rRFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>63</td>
<td>62</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>MBW</td>
<td>37</td>
<td>38</td>
<td>37</td>
<td>38</td>
</tr>
</tbody>
</table>
Heritability & Repeatability (x100) of RFI

Heritability
- gRFI: 5%
- pRFI: 9%
- eRFI: 11%
- rRFI: 15%

Repeatability
- gRFI: 38%
- pRFI: 40%
- eRFI: 42%
- rRFI: 45%
Correlations (x100): RFI – Sinks & DMI

<table>
<thead>
<tr>
<th></th>
<th>gRFI</th>
<th>pRFI</th>
<th>eRFI</th>
<th>rRFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>0</td>
<td>62*</td>
<td>67</td>
<td>80</td>
</tr>
<tr>
<td>MBW</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>-11</td>
</tr>
<tr>
<td>DMI</td>
<td>37</td>
<td>82**</td>
<td>88</td>
<td>83</td>
</tr>
<tr>
<td>Phenotypic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM</td>
<td>-33</td>
<td>0</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>MBW</td>
<td>-4</td>
<td>0</td>
<td>3</td>
<td>-6</td>
</tr>
<tr>
<td>DMI</td>
<td>59</td>
<td>81**</td>
<td>85</td>
<td>88</td>
</tr>
</tbody>
</table>

*pRFI strongly genetically correlated with ECM

**pRFI genetically and phenotypically more similar to DMI than gRFI
Genetic & Phenotypic Correlations (x100) Between Different RFI Expressions

<table>
<thead>
<tr>
<th></th>
<th>gRFI</th>
<th>pRFI</th>
<th>eRFI</th>
<th>rRFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>gRFI</td>
<td>-</td>
<td>84*</td>
<td>72</td>
<td>68</td>
</tr>
<tr>
<td>pRFI</td>
<td>94</td>
<td>-</td>
<td>92</td>
<td>99</td>
</tr>
<tr>
<td>eRFI</td>
<td>84</td>
<td>92</td>
<td>-</td>
<td>92</td>
</tr>
<tr>
<td>rRFI</td>
<td>84</td>
<td>98</td>
<td>91</td>
<td>-</td>
</tr>
</tbody>
</table>

* gRFI and pRFI are genetically different traits
Genomic Evaluation

- 111,857 weekly records
- 5,325 (4,313 genotyped) cows
- 1,160 (943 genotyped) sires
- 19,137 (8,375 genotyped) animals in pedigree
- Same model as for VCE
 - ECM and MBW as sinks for DMI, 4 definitions of RFI
- Method:
 - ssGBLUP
 - MiX99 software
Correlations (x100) Between GEBV of RFI for Official Sires (N = 298)

Significant re-rankings between gRFI and pRFI
Correlations (x100) Between GEBV for RFI and Other Traits for Official Sires (N = 298)

<table>
<thead>
<tr>
<th></th>
<th>ECM</th>
<th>MBW</th>
<th>DMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>gRFI</td>
<td>-1</td>
<td>-8</td>
<td>21</td>
</tr>
<tr>
<td>pRFI</td>
<td>75*</td>
<td>14</td>
<td>83*</td>
</tr>
<tr>
<td>eRFI</td>
<td>80</td>
<td>23</td>
<td>89</td>
</tr>
<tr>
<td>rRFI</td>
<td>88</td>
<td>1</td>
<td>82</td>
</tr>
</tbody>
</table>

*relative to gRFI, pRFI rankings are much more like ECM and DMI rankings
Conclusions

• Using recursive modelling as operational tools (re-parametrization of multiple-trait model parameters) allowed for definition, derivation and interpretation of different expressions of RFI in dairy cattle
• Substantial differences between different definitions of RFI
 • Genetic parameters
 • Genomic evaluation results
• Consequences of using Genetic vs Phenotypic RFI for genetic selection
Generalizations

• ‘Producing Ability’ RFI derived from G + PE co-variance components
• ‘Herd’ RFI derived from model with random herd effect
• Other residual (or ratio) traits e.g. residual CH$_4$ production, CH$_4$ yield or intensity
• Other (more) energy sinks e.g. Δ BW

• Heterogeneity of RFI between and across lactation(s) (random regression model)
EDGP & RDGP Participating Organizations & Data Contributors
Thank You