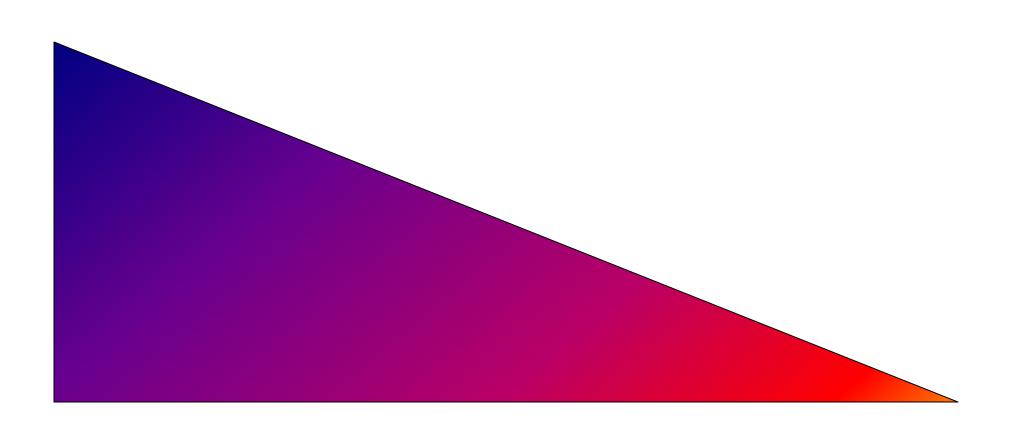

Interbull Technical Workshop and Industry Meeting Verden, Germany, 24-25 February, 2015 Session: International Genetic Correlations

Across Country Genetic Correlations: From Estimation to Utilization Eva.Hjerpe@slu.se, Hossein.Jorjani@slu.se

Across Country Genetic Correlation


- 1- An anecdote
- 2- A review of scientific developments
- **3- The practice**
- 4- The effects

5- Some personal remarks

An Anecdote

A Review of Scientific Developments

Multiple-Country Comparison of Dairy Sires

L. R. SCHAEFFER Department of Animal and Poultry Science University of Guelph Guelph, ON, Canada N1G 2W1

To ana-

lyze the data with the multiple-trait model, estimates of residual and sire variances and the genetic correlation between the two countries need to be available.

INTERBULL

A review of scientific developments (2)

Estimation of Genetic (Co)variance Components for International Evaluation of Dairy Bulls

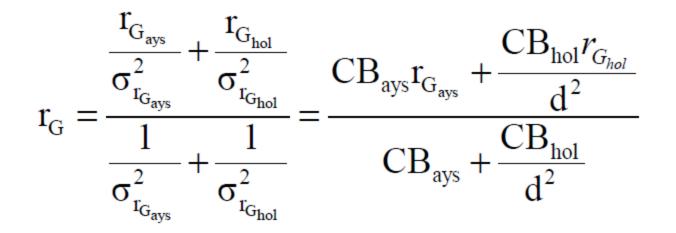
Sigurdsson, A., Banos, G. and Philipsson, J. (INTERBULL Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, S-750 07 Uppsala, Sweden). Estimation of genetic (co)variance components for international evaluation of dairy bulls. Accepted January 12, 1996. Acta Agric. Scand., Sect. A, Animal Sci. 46: 129–136, 1996. © 1996 Scandinavian University Press.

Agust Sigurdsson*, Georgios Banos and Jan Philipsson

INTERBULL Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, S-750 07 Uppsala, Sweden

$$\mathbf{G}_{ij}^{(k+1)} = \frac{[\hat{\mathbf{u}}_{i}^{(k)}\mathbf{T}_{uu}\hat{\mathbf{u}}_{j}^{(k)} - \hat{\mathbf{g}}_{i}^{(k)}\mathbf{T}_{gg}\hat{\mathbf{g}}_{j}^{(k)} + \mathrm{tr}(\mathbf{T}_{uu}\mathbf{W}_{ij}^{uu(k)}) + 2\mathrm{tr}(\mathbf{T}_{gu}\mathbf{W}_{ij}^{ug(k)}) + \mathrm{tr}(\mathbf{T}_{gg}\mathbf{W}_{ij}^{gg(k)})]}{a}$$

A Method To Estimate Correlations Among Traits In Different Countries Using Data On All Bulls


L. Klei¹⁾ and K. A. Weigel²⁾ ¹⁾ Holstein Association USA, Inc. Brattleboro, Vermont, USA ²⁾ University of Wisconsin, Madison, Wisconsin, USA

$$\begin{split} G_o^{(t+1)} &= G_o^{(t)} + G_o^{(t)} \sum_{[m]} \Big\{ H_{[m]} (G_o^{(t)^{-1}} \hat{S}_{[m]}. G_o^{(t)^{-1}} \\ &- q_{[m]} G_o^{(t)^{-1}} \Big\} H_{[m]}^T \Big\} G_o^{(t)} / q \end{split}$$

MACE for Ayrshire Conformation: Impact of Different Uses of Prior Genetic Correlations

Thomas Mark¹, Per Madsen², Just Jensen² and Freddy Fikse¹ ¹Interbull Centre, Uppsala, Sweden ²Danish Institute of Agricultural Sciences, Foulum, Denmark

J. Dairy Sci. 86:677–679 © American Dairy Science Association, 2003.

A Simple Method for Weighted Bending of Genetic (Co)variance Matrices

H. Jorjani,* L. Klei,† and U. Emanuelson*

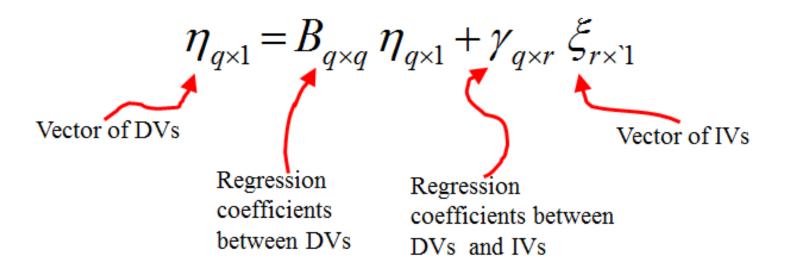
*Interbull Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden †Holstein Association USA, Inc., 1 Holstein Place, Brattleboro, VT 05301-0808

- 1. Determine matrix of eigenvectors, U_n , and diagonal matrix of eigenvalues, D_n , of V. Hence, $V_n = U_n D_n U_n'$, where n denotes iteration number;
- Replace D_n with Δ_n, where δ_{i,i} = ε, for d_{i,i} < ε, and δ_{i,i} = d_{i,i}, otherwise. Set the value of ε to a small positive real number;
- 3. Calculate a new covariance matrix: $\mathbf{V}_{n+1} = \mathbf{V}_n [\mathbf{V}_n \mathbf{U}_n \Delta_n \mathbf{U}_n'] \odot \mathbf{W}$ (where \odot is the Hadamard product);
- 4. Repeat until V_{n+1} is positive definite.

J. Dairy Sci. 88:1214–1224 © American Dairy Science Association, 2005.

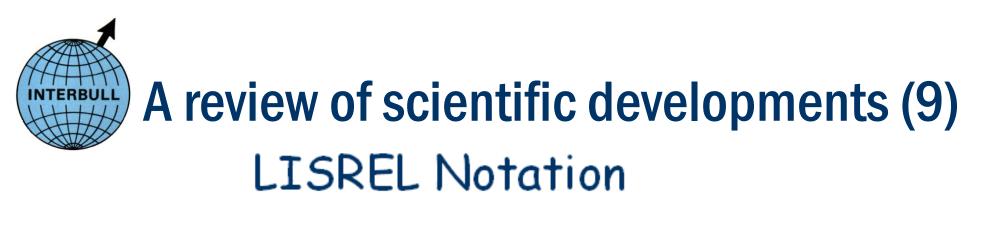
Data Subsetting Strategies for Estimation of Across-Country Genetic Correlations

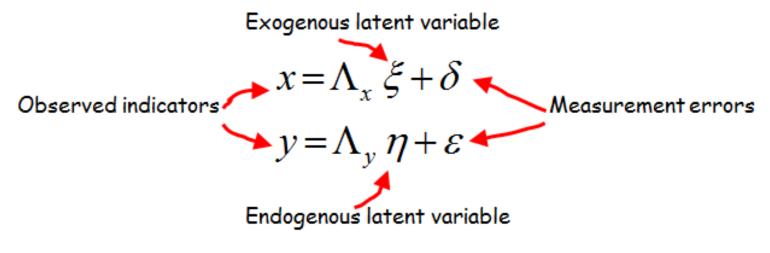
H. Jorjani, U. Emanuelson,* and W. F. Fikse Interbull Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, S-75007 Uppsala, Sweden


Rank reduction models

- Works from France

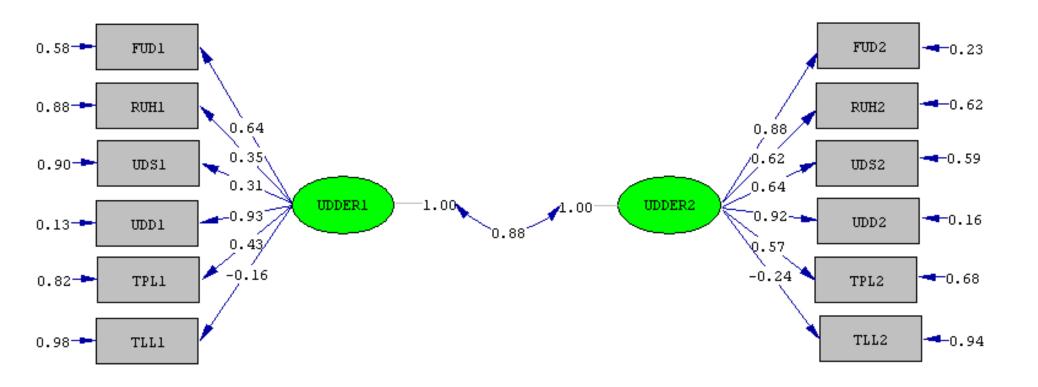
- Works from Finland




Bentler-Weeks formulation of SEM

 Φ_{rxr} = Covariance matrix of IVs

Parameters to estimate are B, γ and Φ (use ULS, GLS, ML, ...)



 $E(\eta) = E(\xi) = E(\varepsilon) = E(\delta) = 0 \quad \xi \in \delta \in \eta \delta \delta \xi \in \varepsilon$ s uncorrelated with ξ , δ and η δ uncorrelated with ξ , ε and η $\Theta_{\varepsilon} = E(\varepsilon \varepsilon'), \Theta_{\delta} = E(\delta \delta')$

SEM for Udder traits in AYS (implemented in LISREL)

The Practice

What are the problems?

- Computational problem
 - CPU (RAM) requirement;
 - CPU time requirement;

- Structural problem
 - Poorly linked populations

Out of 12997 across country genetic correlations:

Number of correlations	Number of common bulls
230	1
82	2
99	3
49	4
95	5
45	6
140	7
113	8
106	9

Out of 960 across country genetic correlations with CB < 10:

Breed	CB < 10
BSW	67
GUE	39
HOL	200
JER	71
RDC	493
SIM	90

Across Country Genetic Correlations (Estimation):

- * Use country subsetting,
- * 3-5 countries in a subset,
- * Use the USA as the "link-provider"
- * Use **bull subsetting** (only CB + ³/₄ sibs)
- * Use REML (KW98 Package) to estimate r_G for subsets
- * <u>Combine r_G sub-matrices in full sized r_G matrix</u>

(Only 26 HOL-traits combinations (out of 171))

Across Country Genetic Correlations (Post-processing)

- * <u>Harmonize</u> r_G values across evaluations
- * Form groups of countries
 - Impose "windows" within/across groups of countries
 - <u>Regress towards median r_G within group</u>
- * <u>Use HOL r_G values from HOL for other breeds</u>
- * <u>Weigh current estimate and previously used r_G values</u>
- * Bend the r_G matrix

The Effects

There were 12997 genetic correlations during 1409t Comparison between 1409t and 1401t

- * 1896 E r_{G} values changed > 0.05 (about 14.6%)
- * 820 W r_G values changed > 0.05 (about 6.3%)
- * 746 P r_G values changed > 0.05 (about 5.7%)

There were 12997 genetic correlations during 1409t

Correlation between old & new E r_G values: 0.787Correlation bewteen old & new W r_G values: 0.808Correlation between old & new P r_G values: 0.840

There were 12997 genetic correlations during 1409t

Correlation between	E & W	r _G values: 0.813
Correlation bewteen	E & P	r _G values: 0.675
Correlation between	W & P	r _G values: 0.800

There were 12997 genetic correlations during 1409t

of r_G values chaning > 0.05 between E & W:3193# of r_G values chaning > 0.05 between E & P:3659# of r_G values chaning > 0.05 between W & P:1198

Some personal remarks

- 1- The main problem is the poor link between populations;
- 2- This problem is not going away;
- **3** We manipulate the estimated r_G values too much;
- 4-We have to find better (and simpler) methods.

Hossein Jorjani

Interbull Centre

Department of Animal Breeding & Genetics Swedish University of Agricultural Sciences Box 7023 S – 750 07 Uppsala, Sweden

