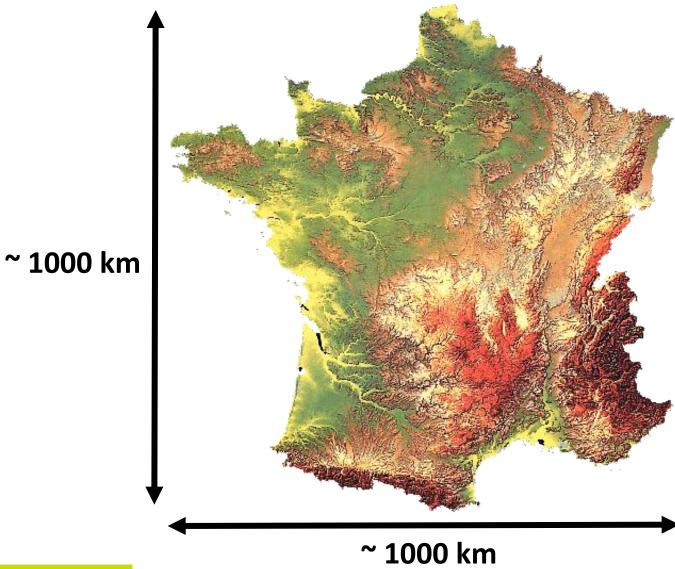


# French genomic experience: genomic for all ruminant species

E. Venot¹, D. Boichard¹, V. Ducrocq¹, P. Croiseau¹, S. Fritz³, A. Baur³, R. Saintilan³, T. Tribout¹, .M-P Sanchez¹, P. Boulesteix², JM. Astruc², A. Legarra¹, C. Robert-Granié¹, C. Carillier¹, I. Palhière¹, F. Tortereau¹, R.Rupp¹, H. Larroque¹, V. Loywyck², S. Mattalia²


<sup>1</sup> INRA, <sup>2</sup> IDELE, <sup>3</sup> ALLICE







## **French specificities**









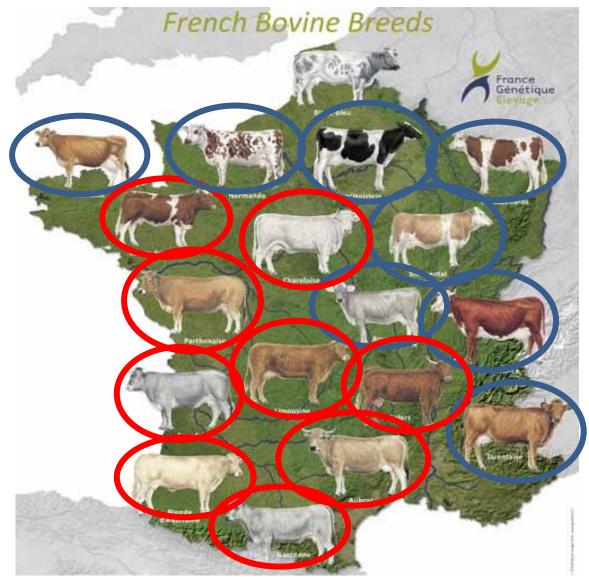






## **French specificities**












## **Large number of breeds**













## **Small ruminant breeds**















## French national and collective organization

- ► Inter-professional association for genetic improvement of all ruminants
- Common management quality system for all on-field organizations
- Centralized national database
- Close relationship between Industry partners and R & D



Win – Win situation





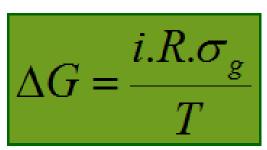


- ► Share of R & D between species
- **Example with the share of tools:** 
  - in 2016 a common pipeline to impute & phase
     Dairy & Beef genomic information from different chips
  - implementation of dairy sheep in the same pipeline in progress










## French genomic developments led by Dairy cattle pioneers

#### **IDEAL SITUATION**

- large number of tested bulls and large use of AI
- large generation interval
- high cost of progeny testing
- small genetic size populations
- relative small genotyping cost / breeding animal price
- **▶** international breeds (Interbull evaluation and possible consortia)



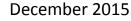













## Reference population size & Accuracy (R)

Reference population per breed and reliabilty expected for candidates

| Breed        | Nb Bulls | Nb Dams | Young candidate REL |
|--------------|----------|---------|---------------------|
| HOLSTEIN     | 33000    | •       | [0.55-0.70]         |
| BROWN        | 6000     | -       | [0.45-0.70]         |
| MONTBELIARDE | 2800     | 31000   | [0.55-0.70]         |
| NORMANDE     | 2400     | 16000   | [0.50-0.65]         |























## Reference population size & Accuracy (R)

Reference population per breed and reliabilty expected for candidates

| Breed        | Nb Bulls | Nb Dams | Young candidate REL |
|--------------|----------|---------|---------------------|
| HOLSTEIN     | 33000    | -       | [0.55-0.70]         |
| BROWN        | 6000     | -       | [0.45-0.70]         |
| MONTBELIARDE | 2800     | 31000   | [0.55-0.70]         |
| NORMANDE     | 2400     | 16000   | [0.50-0.65]         |



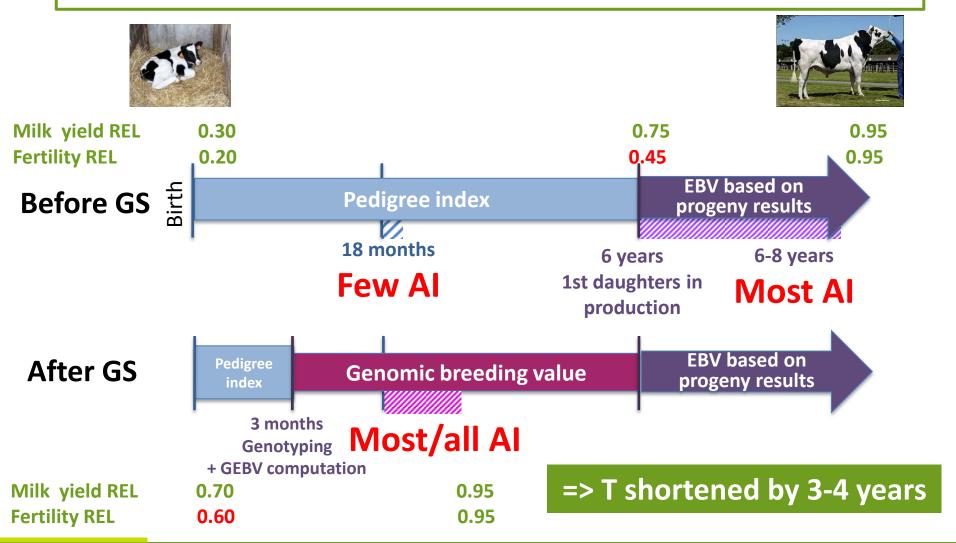


December 2015

Genomic selection started in 2009 (QTL-GS)
6 times / year with QTL and marker effects estimation

+

Weekly (without QTL effect estimation)





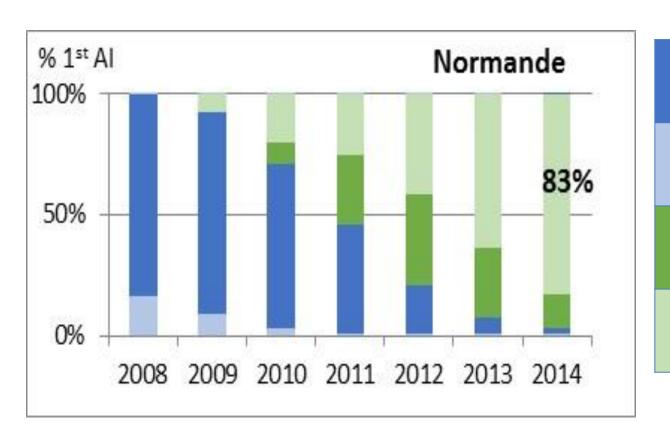





## Reduction of generation interval and more efficient selection on functional traits












## Quick adoption of GS by breeders: use of young genomic bulls

#### Al % in France

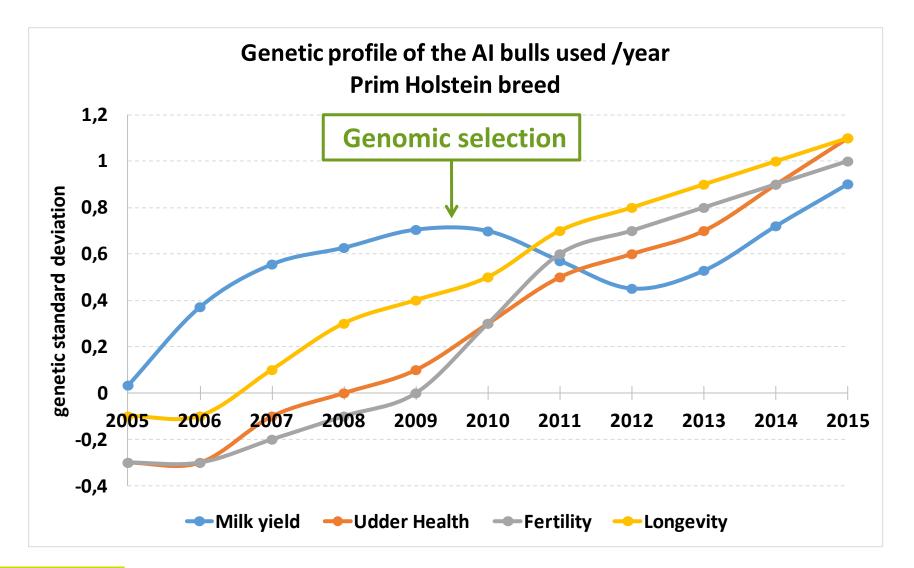


**Proven bulls** 

Bulls under progeny testing

Proven bulls with genomic EBV

Young bulls with genomic EBV without daughters



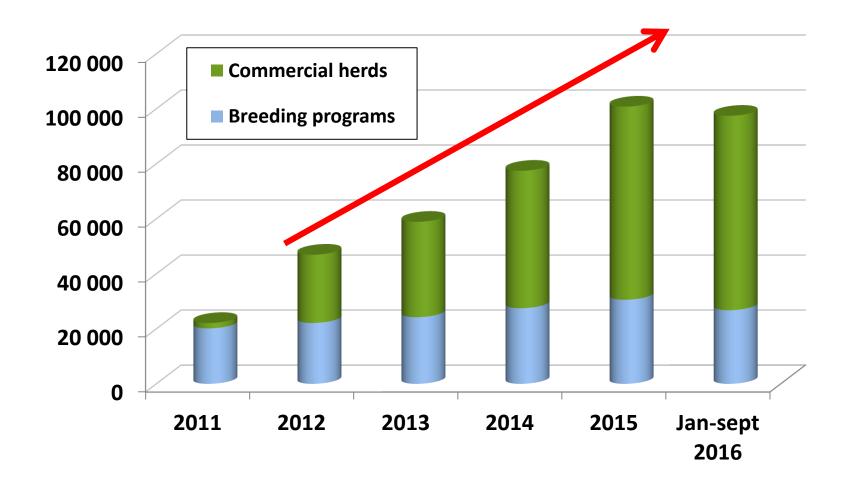







## Quick adoption of GS by breeders: more balanced selection





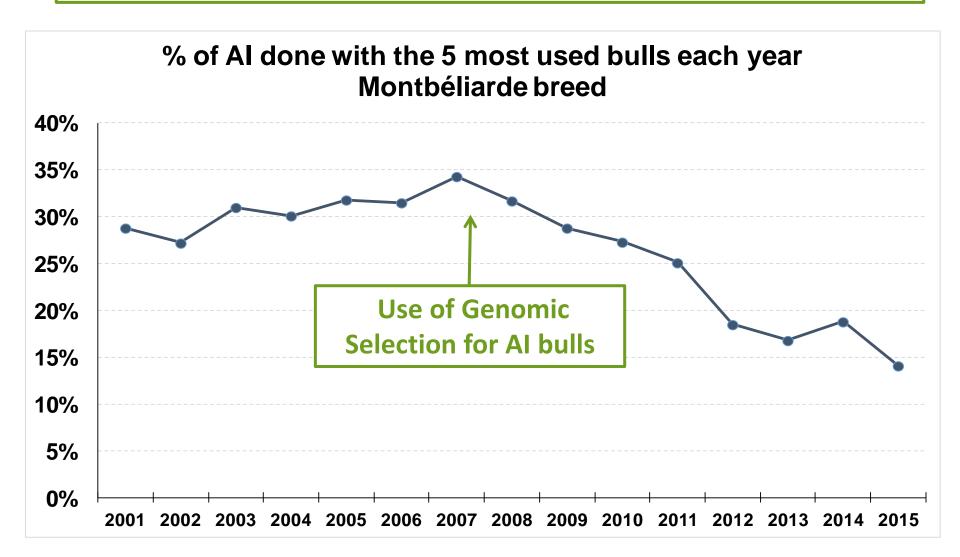







## Large increase of genotyping












## Larger panel of bulls used











## Implementation in other breeds and species?

- Less favorable situation for Beef cattle breeds
  and Dairy regional breeds
  - genetic population size larger
  - reference population more difficult to generate
    - smaller population size
    - less AI for beef breeds
    - phenotype less precise / DYD



Multi-breed option?









#### Multi-breed genomic evaluation for cattle?

HD genotyping of bulls from 18 cattle breeds in selection in France



#### Unsuccessful

=> very few common QTL found between breeds

=> no multi-breed genomic evaluation possible



## Good basis to develop genomic selection for several breeds









## **Genomic selection for regional dairy cattle breeds**

#### Reference population per breed and reliabilty expected for candidates

| Breed      | Nb Bulls | Nb Dams | Young candidate REL |
|------------|----------|---------|---------------------|
| ABONDANCE  | 350      | 1900    | [0.35-0.55]         |
| TARENTAISE | 300      | 1300    | [0.30-0.50]         |
| SIMMENTAL  | 300      | 200     | [0.20-0.50]         |
| VOSGIENNE  | 60       | 1100    | [0.20-0.50]         |









December 2015











## Reference population for beef cattle breeds

| mal                     | •       |                            |                            |                          |
|-------------------------|---------|----------------------------|----------------------------|--------------------------|
| Maternal                |         | Charolais                  | Limousine                  | Blonde                   |
| 200                     | Birth   | 15 000 / <mark>1800</mark> | 6 600 <b>/ 2 700</b>       | 5 600 / <b>1 200</b>     |
| Direct genetic          | Weaning | 12 500 / <mark>2400</mark> | 5 600 / <mark>2 400</mark> | 3 900 / <b>1</b> 000     |
| effect                  | Carcass | 2 400 / 600                | 1 750 / <mark>400</mark>   | 720 / <mark>300</mark>   |
| Maternal genetic effect | Birth   | 5 200 / <mark>500</mark>   | 3 300 / 200                | 3 000 / <mark>200</mark> |
|                         | Weaning | 4 500 <b>/ 450</b>         | 2 400 / 500                | 2 100 / <mark>200</mark> |



Blending of polygenic and genomic results (VanRaden et al., 2009)

#### **Example of reliability gain for young Charolais calf**



| EBV                             | Reliability gain |
|---------------------------------|------------------|
| Birth                           | + 0.10           |
| <b>Growth Total Merit Index</b> | + 0.06           |
| Maternal Total Merit Index      | + 0.09           |









### Reference population for beef cattle breeds

| mal                     | •       |                            |                          |                          |
|-------------------------|---------|----------------------------|--------------------------|--------------------------|
| Maternal                |         | Charolais                  | Limousine                | Blonde                   |
|                         | Birth   | 15 000 / <mark>1800</mark> | 6 600 <b>/ 2 700</b>     | 5 600 / <b>1 200</b>     |
| Direct genetic          | Weaning | 12 500 / <mark>2400</mark> | 5 600 <b>/ 2 400</b>     | 3 900 / 1 000            |
| effect                  | Carcass | 2 400 / 600                | 1 750 / <mark>400</mark> | 720 / <mark>300</mark>   |
| Maternal genetic effect | Birth   | 5 200 / <mark>500</mark>   | 3 300 / 200              | 3 000 / <mark>200</mark> |
|                         | Weaning | 4 500 / 450                | 2 400 / 500              | 2 100 / <mark>200</mark> |



Blending of polygenic and genomic results (VanRaden et al., 2009)



Official since end 2015 for BLA, CHA and LIM

2 national runs / year

Weekly computation for new candidates (without re-estimation of marker effects)









### What about Small ruminants?

- Less favorable situation for small ruminants
  - cost of genotyping relatively high
  - already short generation interval
  - use of fresh semen for AI in sheep
  - Al demand highly concentrated in time







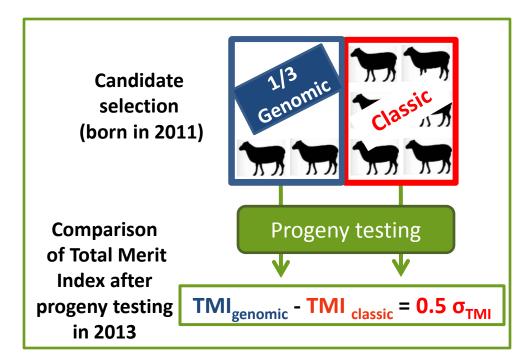


(2015)

## Different cases:

|                 | Number of milk recorded ewes | Genotyped rams with daughters |
|-----------------|------------------------------|-------------------------------|
| Lacaune         | 156 491                      | 4 716                         |
| Manech TR       | 66 020                       | 1 879                         |
| Basco-Béarnaise | 21 620                       | 562                           |
| Manech TN       | 9 302                        | 475                           |
| Corse           | 14 028                       | 197                           |










## **Results for dairy sheep**

- QTL detection studies: no big QTL found (limited power detection)
- ssGBLUP with phantom group
  - => reliability gain: [ 0.13 ; 0.20 ]
- Lacaune experimental study:
- different genomic selection pressures on young rams modelized



- => with 1/3 selection pressure, + 15 % genetic gain without extra cost
- => cost of genotyping balanced by reduction of number of rams in AI Center.



GS started in 2015 (7 GS /year) + end of progeny testing









## Meat sheep

- limited or no progeny testing and limited Al => No GS planned
- Genotyping first for parentage verification and assignation
- Research to include major gene in genetic evaluation (prolificacy...)

#### Goats

- Goat chip available in 2010
- Research in progress on:
  - combination of the 2 breeds (Alpine and Saanen)
  - o international collaboration
  - major gene inclusion in genetic evaluation



**Goal: start of Genomic Selection in 2017** 









#### CONCLUSION

- It has been a real genomic revolution these last years
- large impact on selection scheme organization => early use of breeding animals for higher genetic gain on all traits
- ► thanks to the French collective and efficient organization with Industry partners closely linked to R & D, genomic selection have been adapted to the different specificities of ruminant species and breeds



Genomic evaluation in place in 14 cattle and 1 sheep breeds.

In the very next future for 4 sheep and 2 goat breeds









## END OF THE STORY? ...

## ... NO! JUST THE BEGINNING!

- several challenges to come:
  - Organizational reforms
  - Reference population maintenance
  - Competition for new phenotypes
  - Integration of sequence information

. . .











#### **REFERENCES**

GENOMIC SELECTION

http://en.france-genetique-elevage.org

- www.idele.fr
- www.allice.fr

http://www.jouy.inra.fr/gabi\_eng

eric.venot@inra.fr











ormance breeds

French genetics for cattle, sheep and goat industries