Single-step genomic predictions of a minor breed

(concurrently with the large genomic evaluations of a main breed).

Andrei A. Kudinov, Minna Koivula, Gert P. Aamand, Ismo Strandén, & Esa A. Mäntysaari

Who is Finncattle (FIC)?

- FIC represents <1% of milk recorded cows in Finland (in 2019)
- 36,133 animals in pedigree in milk evaluations (1950-2020)
- FIC test-day evaluations are part of Red Dairy cattle DFS* runs
- ~1,000 FIC genotypes available (~200 bulls & 800 cows)
- Aim: Deliver GEBVs to FIC breeders and farmers.

*DFS = Denmark, Finland, and Sweden

Single-step evaluations

Single-step is the target in Nordic Dairy Cattle evaluations

√ ssGTBLUP with Metafounders

 \checkmark ssGTBLUP with full QP transformation and G_{05} [Allele frequency = 0.5; inbreeding in A^{-1} and A_{22} ; G scaled by ${\rm tr}(A_{22})/{\rm tr}(G_{05})$]

Will RDC single-step evaluations works properly for FIC? Will FIC genotypes harm RDC single-step evaluations?

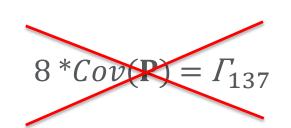
Data

- > Test-day records: from 3.6M RDC, 0.86M HOL, and 30K FIC cows
- ➤ Pedigree included 5.9M animals (107K males) with 137 UPG
- ➤ Genotypes: ~170K RDC & 917 FIC

Metafounders concept

ssGBLUP with MF (Legarra et al. 2015; Christensen, 2015).

$$(\mathbf{H}^{\Gamma})^{-1} = (\mathbf{A}^{\Gamma})^{-1} + \begin{pmatrix} 0 & 0 \\ 0 & \mathbf{G}_{w}^{-1} - (\mathbf{A}_{22}^{\Gamma})^{-1} \end{pmatrix}$$


Relationships among MF are described by Γ .

$$\Gamma = 8 *Cov(\mathbf{P})$$

P - allelic frequencies (AF) across loci in base population.

Use 137 UPG as 137 MF?

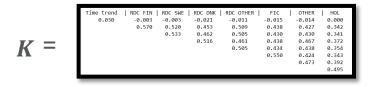
Impossible to calculate AF for each UPG

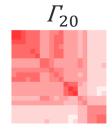
- Structure of pre-gamma ($arGamma_{pre}$) was defined with covariance function kernel K

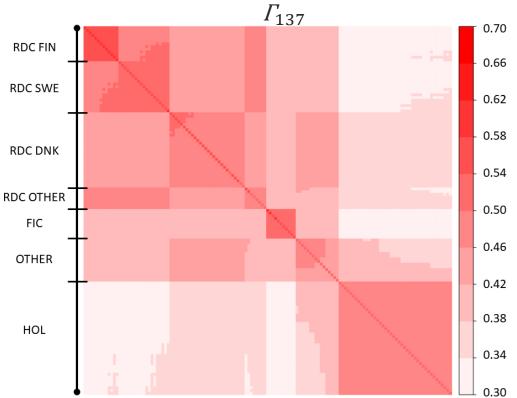
$$\Gamma_{pre}=\Phi_{pre}~K\Phi_{pre}'$$
 #1
 $K=(\Phi_{pre}'\Phi_{pre})^{-1}*\Phi_{pre}'\Gamma_{pre}\Phi_{pre}*(\Phi_{pre}'\Phi_{pre})^{-1}$ #2
#1Kirkpatrik et al., 1994


• K was used to extend structure of Γ_{pre} to Γ_{137}

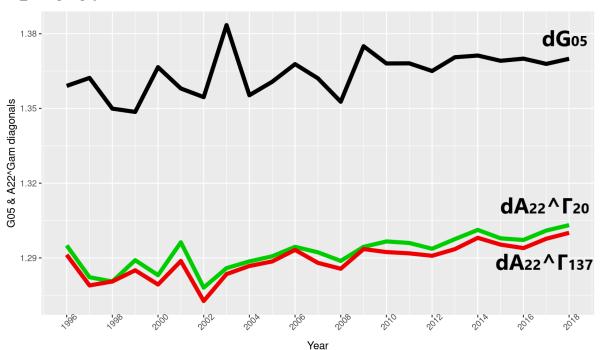
$$\Gamma_{137} = \Phi_{137} \mathbf{K} \Phi_{137}'$$


#2Tijani et al., 1999


Approaching suitable pre-Gamma matrix

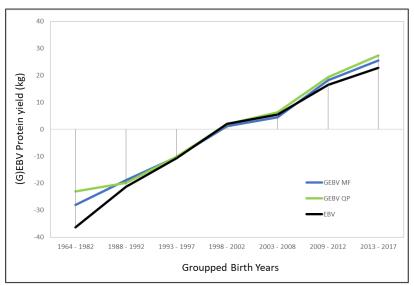

© NATURAL RESOURCES INSTITUTE FINLAND

Expanded Gamma

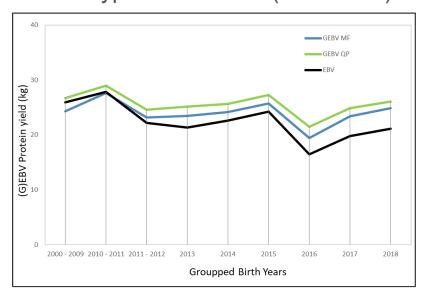

 $\Phi_{137} K \Phi'_{137}$

Relationship matrix diagonals

All Comptyped animals



		Correlation
		G_{05}
Diagonals	A_{22}	0.59
	$A_{22}^{\Gamma_{20}}$	0.56
	$A_{22}^{\Gamma_{137}}$	0.59
Off-diagonals	A_{22}	0.63
	$A_{22}^{\Gamma_{20}}$	0.68
	$A_{22}^{\Gamma_{137}}$	0.67


Genomic prediction. Protein yield genetic trends.

Genotyped FIC Bulls (181 anim.)

*GEBV MF – ssGTBLUP with MF GEBV QP – ssGTBLUP with full QP transformation and G_{05} EBV – Test-Day Animal Model

Genotyped FIC Cows (700 anim.)

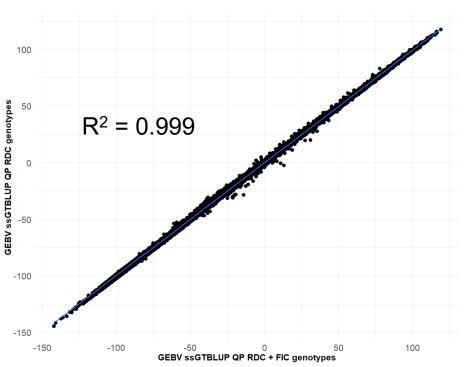
FIC validation Bulls with reliability > 50% in full data.

Legarra & Reverter (2018) validation test for FIC animals.

Model	m(GEBV)-m(GEBVred)	b ₁ (±SE)	R ²
Protein (21 individuals)			
ssGTBLUP MF	-3.98	0.79 (±0.13)	0.66
ssGTBLUP QP	-4.22	0.90 (±0.15)	0.66
EBV	-3.13	0.82 (±0.18)	0.53
Milk (22 individuals)			
ssGTBLUP MF	-177	0.80 (±0.16)	0.60
ssGTBLUP QP	-195	0.92 (±0.17)	0.60
EBV	-203	0.93 (±0.14)	0.69

FIC validation

Cows with reliability >50% in full data


Legarra & Reverter (2018) validation test for FIC animals.

Model	m(GEBV)-m(GEBVred)	b ₁ (±SE)	R ²		
Protein (109 individuals)					
ssGTBLUP MF	3.45	0.83 (±0.08)	0.50		
ssGTBLUP QP	3.14	0.89 (±0.09)	0.48		
EBV	4.25	0.79 (±0.11)	0.32		
Milk (125 individuals)					
ssGTBLUP MF	76	0.99 (±0.07)	0.61		
ssGTBLUP QP	66	1.04 (±0.08)	0.59		
EBV	90	0.94 (±0.09)	0.48		

Influence of FIC genotypes on RDC evaluations

GEBVs of RDC bulls obtained from ssGTBLUP QP model with and without FIC genotypes

Take home message

- Covariance kernel function could be used to compute large Γ
- Covariable matrix Φ is arbitrary year-to-year variation is defined by researcher
- RDC MF trends apparently assign too strict trend to FIC MF
- FIC barely harm RDC single-step runs on that level

Acknowledgments

Project "Genomic evaluations for Western Finncattle" Financing Luke and FinnCattle Foundation, Finland

Data provided by:

- FABA
- NAV
- **VIKINGGENETICS**

Thank you!

