Preliminary results on de-regressed proof in single-step GBLUP

Yutaka Masuda University of Georgia

Zengting Liu, VIT, Germany Peter Sullivan, Lactanet, Canada

"Genomic-free" de-regression

• What if using as

Option 3: ssDRP

Deregressed ssGEBV Proofs

- >Methods developed, but no proof of concept for MACE
 - Do ssDRP include daughter phenotype but NOT genotype?
 - Does de-regressing genotypes re-introduce GPS bias?
 - To be applied by each country (need genotype access)
 - New programming by each country, or by Interbull for all

Genomic-Free EBV for MACE

(Interball Webinar, Feb 11, 2021)

in each country

- Zengting has suggested but never published it in public.
 - What kind of animals should we use for de-regression?
 - What is the computing cost?
 - How does

Objectives

• Examine if

- De-regressed proofs with reflect GEBV well.
- De-regressed proofs account for the pre-selection bias in a sire model with
- Target: proven bulls
 - Genetic trend of EBV/GEBV
 - Genetic trend of re-evaluated proofs with sire model

Simulation

- Mimicking a dairy-cattle breeding program
 - Yrs 10-11: foundation
 - Yrs 12-15: transition to progeny testing (20 selected bulls out of 200 candidates; 40 active bulls)
 - Yrs 16-30: progeny testing
 - Yrs 31-33: transition to genomic selection (25 selected young-bulls out of 500 candidates; 50 active)

• Yrs 34-42:

Data and model

Data	N	Description		
Phenotypes	284,783	 One phenotype per cow PT bull with at least 50 daughters Selected bulls with 100 daughters on average per year (Gamma dist.) 		
Pedigree	1,541,288	 No missing parents Dam pedigree traced back within a herd 		
Genotypes	6,900	 Bulls born after generation 20 1989 proven bulls 4911 young bulls 		

Genetic evaluation

- and
- Progeny testing: animal model BLUP:
- Genomic selection: TBV + noise with reliability = REL_G (equivalent to DE=15) + REL_PA
- Simplified EDC based on Interbull Method (Fikse and Banos, 2001)

De-regression methods

- Method 1: based on
 - Based on Jairath et al. (1998) but no UPG

- : sire EBV, : sires' ancestor EBV,
 - : diagonal matrix of EDC,
 - : de-regressed proof

- Method 2: based on
 - Same as Method 1 except for replacing with

- With all animals i.e., genotyped (both proven and young bulls) and non-genotyped animals
- Thanks to Zengting's

Re-evaluation of de-regressed proof

- Mimicking "MACE" with deregressed proofs
 - (= fixed birth-year group effect)
 It is close to the MACE model.
- Single-trait sire model with MGS pedigree

- Confirm if
 - reproduces the original GEBV.
 - Pre-selection bias in disappears.
- Thanks to Peter's suggestion

Genetic trend of TBV/EBV/GEBV

For bulls with daughters

- Clear change of genetic trends after year 30
 - **EBV**: highly biased
 - **GEBV**: less but still biased
- Missing information in G
 - Selection based on pseudo GEBV (TBV + noise)
 - Only proven bulls (and young genotypes) in G
 - Small size of data

Where the bias goes?

- Pre-selection bias merged to the year effect
 - Pointed out by Esa.
 - In practice, it will be confounding with herd-year or the other contemporary effects.
 - And possibly, it could be merged to UPG effects.

Sire-model proof with year effect ()

Years ≥30 ()

proof	Ga	Gh	TBV	EBV	GEBV
Aa	0.99	>0.99	0.97	0.90	0.97
Ga		>0.99	0.97	0.84	0.95
Gh			0.98	0.86	0.95
TBV				0.83	0.94
EBV					0.96

Summary

- De-regressed proofs from ssGBLUP can work.
 - Deregressed with or .
 - Able to reproduce GEBV by MACEstyle sire model.
 - No pre-selection bias in reproduced sire proofs.
- ... with simulated data

•

• Correct validation method?

- Very preliminary results: many concerns
 - Real data?
 - Genotyped daughters
 - Multiple-country data
 - Missing pedigree
 - Foreign (external) information
 - General de-regressed method: single-step GBLUP/SNPBLUP