Improved genomic validation with extra regressions

Paul M. VanRaden

USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, USA.

paul.vanraden@usda.gov

Current and future validation options

- Tests I, II, and III check for bias in proven bull genetic trend
- Test IV checks for stability of EBV variance (MS)
- Genomic validation checks if young bull GEBV match later DYD
- Future options for genomic validation:
 - Use later GEBV or deregressed GEBV instead of later DYD or deregressed EBV as dependent variable (better for ssGBLUP)
 - Add regression on age to test if genetic trend in young bulls changes when they later add daughter records
 - Add other regressions such as for PA or inbreeding

Dependent variables and weighting

- Prediction of new data should account for selection in old data
 - Conventional DYD excludes genomic info (could be biased)
 - New GEBV contains info from old GEBV (not independent)
 - Deregressed GEBV = GEBVold + (GEBVnew GEBVold) / Rdif
 - Similar to deregressed EBV = PA + (EBV PA) / Rdif
- Weighting based on difference in reliability
 - Compute newEDC oldEDC and convert difference to Rdif
 - Weight bull dGEBV by Rdif (no weight if no reliability gain)

VanRade

Information added after truncation

- Gains in reliability come from added:
 - Parent info and higher REL(PA)
 - Genomic info from larger reference population
 - Own records for cows
 - Daughter records as summarized in DYD
 - Granddaughter records (may be > daughters but not in DYD)
- Validation could test the sum of all changes in GEBV
- Requires EDC difference from all sources as a function of REL

Data and methods used

- Official GEBVs for 3,504 HO bulls with daughters in >10 herds in Dec 2020 but none in Dec 2016
- Earlier GEBVs were adjusted to the later genetic base
- Predict later dGEBV to get model R², or predict the changes (later dGEBV – earlier GEBV) to get residual R²
 - High model R² values are desired
 - Low residual R² values are desired if the extra regressions do not contribute significantly (GEBV changes not predictable)
 - Large t test values (> ±3) indicate significant regressions

Which dependent variable to validate?

Dependent	B1	T tests (significance)		R² (%)	
variable	-	B1 ¹	BO	Residual	Model
DYD	1.03	1.9	-14.4	0.10%	59%
dGEBV	0.99	-0.9	-16.5	0.02%	69%
GEBV	0.99	-0.8	-16.3	0.02%	72%

¹Test of B1 difference from expected 1.0

Genomic validation with just 1 or extra regressions

B1	T tests (significance)					R² (%)	
-	B1 ¹	Age(yr)	PA	EFI ²	B0	Residual	Model
0.99	-0.9				-14.4	0.02	69
1.08	7.1	-19.1			-25.7	9	72
1.43	19.4		-22.6		-14.7	13	73
1.00	-0.2			-4.6	3.4	1	69
1.47	20.0	-14.8	-18.5	-3.1	1.0	18	77

¹Test of B1 difference from expected 1.0 ²Expected Future Inbreeding for bull in 2016

Validation with extra regressions in CAN

B1		T tests (sigr	R² (%)			
	B1	Birth yr	ΡΑ	B0	Residual	Model
0.99	-0.7			-2.6	0.03	60
1.06	2.8	-10.0		10.0	6	62
1.29	8.5		-10.9	1.7	7	63
1.39	11.1	-11.1	-12.0	11.1	14	65

Provided by Pete Sullivan, LactaNet

Model R² for CAN and USA differ due to edits and bulls included, Dependent variable was later GEBV rather than dGEBV.

VanRaden

- Regression **B1** was near 1.0 in standard genomic validation
- Three extra regressions were each significant:
 - Later GEBV declined for the youngest bulls, those with highest PA, and those with higher EFI
 - B1 became much >1.0 when those were added
 - Model R² increased to 77% from 69% with all 3 terms added
- Blending DGV with PA reduced B0 bias but also reduced the R²
- The EFI decline was more than expected from F depression

Genomic validations for other USA traits

Trait	B1	T tests (significance)					R² (%)	
		B1	Age(yr)	PA	EFI	B0	Residual	Model
Protein	1.47	17.5	-14.4	-16.3	-3.1	1.8	13	73
Fat	1.40	18.7	-12.9	-18.6	-0.8	-0.7	16	75
SCS	1.22	11.6	1.4	-3.7	-4.1	-4.6	6	73
PL	0.89	-3.8	-6.9	4.1	-6.1	4.0	3	53
DPR	0.91	-3.9	-14.1	3.8	-0.8	-2.4	6	58
CCR	1.15	7.0	-11.3	-3.9	-1.5	-2.0	4	60
HCR	1.10	3.3	-6.0	6.0	-6.5	4.4	5	48

Conclusions

- Validation could use published GEBV or dGEBV and ssGBLUP
- GEBV predictions are simple to explain but not independent
- Later deregressed GEBVs are independent of earlier GEBVs
- Extra regressions can show which bull groups change and why
- Trend differences may reflect inflation of the youngest bull GEBV or preselection bias in proven bull GEBV
- Models may need revision to balance accuracy and bias

Acknowledgments

- Interbull working group on genomic validation:
 - Esa Mäntysaari, Raphael Mrode, Zengting Liu, Pete Sullivan, Paul VanRaden

TERBI

• Interbull staff for support

 AGIL staff and USDA funding of project 8042-31000-002-00-D, "Improving Dairy Animals by Increasing Accuracy of Genomic Prediction, Evaluating New Traits, and Redefining Selection Goals"

