Multi-breed multi-trait single-step genomic predictions for Holstein and Jersey including crossbred animals

Renzo Bonifazi, Stella Aivazidou, Jan ten Napel, Matias Schrauf, Gerben de Jong, Jeremie Vandenplas

Crossbreeding and genomic predictions

Advantages

- Heterosis
- Breed Complementarity
- Inbreeding
- Fertility
- A Longevity
 A

 Reference population difficult to establish

- SNP and QTL effects may differ across breeds due to differences in:
 - genetic backgrounds
 - LD between QTL-SNPs
 - environment

Aim of the study

- Identify the best scenario for multi-breed single-step evaluations
 - Two purebred populations (PBD)
 - Derived crossbred population (XBD)
- Impact of modelling missing pedigree information using genetic groups or meta-founders

Data available

CRVS BETTER COWS > BETTER LIFE

- Pedigree (~1,1 M)
 - Purebred HOL & JER, and XBD
- Genotypes ~127K, 80K SNPs
- Phenotypes
 - Milk yield (~538K) $h^2 = 0.31$
 - CSD (~370K) $h^2 = 0.05$
 - $r_{g \text{ milk, CSD}} = 0.22$

Scenarios

- Single-breed reference population (SINGLE_POP)
 - 3 separate evaluations (with 255 GG)
- Multi-breed reference population using :
 - 255 genetic groups : ALL
 - 4 genetic groups : ALL_4GG
 - 255 metafounders : ALL_255MF
 - 4 metafounders : ALL_4MF

Multi-breed multi-trait approach (MBMT): breeds as traits

r_g between breeds

Validation

- LR method (Legarra & Reverter, 2018)
- Forward-in-time: whole vs partial dataset
- Cut-off: last 6 years phenotypes removed

Validation	aroups,	by	breed:	

- Cows: with genotyped & phenotype for milk and/or CSD, born after cut-off
- Bulls: genotyped & ≥20 daughters with phenotypes for milk and/or CSD born after cut-off and no daughters with records born before cut-off

Breed	Cows	Bulls
HOL	~ 9K	~ 350
JER	~ 4K	~ 170
XBD	~ 13K	~ 130
Total	~ 27K	~ 650

Software

GEBVs estimation using ssSNPBLUP

(pedigree-based) VCE for MTMB scenario: BLUPF90 (gibbs & postgibbs)

Validation: R functions

Genetic correlations between traits and breeds

			CSD			Milk	
		HOL	JER	XBD	HOL	JER	XBD
CSD	HOL	0.03 (0.00)					
	JER	0.59 (0.09)	0.04 (0.01)				
	XBD	0.93 (0.03)	0.66 (0.06)	0.03 (0.00)			
Milk	HOL	0.41 (0.05)	-0.02 (0.10)	0.47 (0.05)	0.24 (0.01)		
	JER	0.55 (0.06)	0.24 (0.07)	0.70 (0.06)	0.82 (0.05)	0.27 (0.02)	
	XBD	0.34 (0.04)	-0.03 (0.10)	0.46 (0.04)	0.96 (0.01)	0.87 (0.03)	0.26 (0.01)

Diagonal: heritability, Off-diagonal: genetic correlations, Brackets: Standard Errors

Metafounders

ALL_4MF

r matrix

	HOL	JER	XBD	OTHER
HOL	0.93	0.78	0.83	0.57
JER		0.72	0.75	0.54
XBD			0.78	0.56
OTHER				0.77

SINGLE_POP: lowest accuracy

• MTMB: lowest accuracy

10

Similar results for cows (smaller SE)

Similar results between: ALL, ALL_255MF, ALL_4GG, ALL_4MF

Dispersion

SINGLE_POP ALL ALL_4MF MTMB

- Overall, dispersion within ±15% (except milk-XBD bulls, CSD-HOL bulls)
- Cows have less dispersion and smaller SE
- Milk: both over/under-dispersion. CSD: mainly over-dispersion (except JER bulls).
- Similar results for **level bias**: overall smaller for Milk (within ±0.05 σ_A) than CSD (within ±0.1 σ_A)

Conclusions

- Benefit of combining data in multi-breed evaluations for PBD and XBD
- Reduce n. GG (similar results with 255 and 4)
- Limited added benefit of using metafounders instead of GG
- MTMB accuracy highest for milk lowest for CSD
- Further investigations using conformation traits

Acknowledgments

Conclusions

- Benefit of combining data in multi-breed evaluations for PBD and XBD
- Reduce n. GG (similar results with 255 and 4)
- Limited added benefit of using metafounders instead of GG
- MTMB accuracy highest for milk lowest for CSD

Thanks for your attention

renzo.bonifazi@wur.nl @RenzoBonifazi