

Using Pseudo-observations to combine Genomic and Conventional Data in the Dutch-Flemish National Evaluation

Herwin Eding W.M. Stoop, M.L. van Pelt, L.C.M. de Haer, G. de Jong CRV – The Netherlands

Content

- GEBV in the Netherlands
- Pseudo-Record Procedure (PSR)

- Results:
 - Compare EBV vs. $GEBV_{PSR}$
 - Compare GEBV_{BLEND} vs. GEBV_{PSR}
 - MT GEBV reliability validation
- Conclusions

GEBV in NLD: Post-processing

Reasons to introduce PSR

- Simplification of the integration process
- More efficient use of genomic data
- Reduction of bias as a result of genomic pre-selection

Sources of bias in GEBV estimation

- Bias due to genomic preselection
 - Bias due to selection on information outside BVE
 - E.g. foreign breeding values
 - GS makes things worse
 - Incorporating all DGV of all genotyped animals
 - Genomic information in BVE => No/less bias
- Bias due to dam of sire
 - Second source of bias in GEBV
 - Known issue in conventional BVE
 - Causes overestimation of PA => bias in BV
 - Blending uses SIx => no bull dam bias
 - PSR system == AM => Use of PA in GEBV

CRV GEBV | H. Eding | February 17, 2015 |

PSR procedure: Mantysaari and Strandén (2010)

- DGV => pseudo-observation (PSR) on absolute scale
 - h² of 0.999
 - $\sigma_{g,psr} = \sigma_{g,original} \rightarrow G_{psr} = G_{original}$
- Genomic part of the DGV ~ summation of SNP effects
 - Non-SNP part of DGV is negligible
- Observed variation strictly explained by genetic makeup
 - No residual covariance, **E**_{psr} is diagonal

 $y_{ij} = mu_{PSR} + animal_i + e_{ij}$

• Multitrait setting with $r_{g (pseudo, original)}$ from DGV validation study

• $r_g = sqrt(R^2_{add})$

PSR procedure: Extension to MT

- Define $\mathbf{R} = \text{diag}(\mathbf{r})$, where $r_i = r_{g (pseudo, original)}$ for *i*-th trait
- Structure of genetic (G) and error (E) covariance matrix :

$$G = \begin{bmatrix} G_{11} & & & \\ G_{12} & G_{22} & \\ RG_{11} & RG_{12} & G_{11} \end{bmatrix}$$
$$E = \begin{bmatrix} E_{11} & & & \\ E_{12} & E_{22} & & \\ 0 & 0 & \frac{(1-h^2)}{h^2} dg(G_{11}) \end{bmatrix} \Rightarrow h^2 \stackrel{\text{def}}{=} 0.999$$

 G_{11} for traits for which a pseudo-trait exists; G_{22} for traits without PSR

PSR procedure: Summary

• Automatic integration of DGV using the PSR system

Results: Conformation

Conventional EBV vs. GEBV_{PSR} : Expectations

- Only changes in Holstein & Holstein pedigrees
- No PSR & with dau : very small changes (due to pedigree)
- Own PSR & with dau : small changes (some extra data)
- Own PSR, no dau
- : some changes (from PA/PI -> GEBV)

Conventional EBV vs. GEBV_{PSR}

Difference in Reliability (GEBV – EBV)

Trait	No PSR, > 10 dau (N=15.614)	PSR, >10 dau (N=4.720)	PSR, no dau (N=2.692)
Correlation BV	~ 1.00	~ 0.99	~ 0.90
Frame	0	8	28
Dairy strength	0	9	23
Udder	0	6	29
Feet&Legs	0	6	20

Conventional EBV vs. GEBV_{PSR}

CRV GEBV | H. Eding | February 17, 2015 |

Blending vs. PSR: Expectations

- Only changes in Holstein & Holstein pedigrees
- Own PSR & with dau : very small changes (due to pedigree)
- Own PSR, no dau : small changes (due to pedigree)

Blending vs. PSR

GEBV			~N (1	00, 4)
Trait	PSR	BLEND	diff	corr
Frame	104.0	103.6	0.4	0.86
Dairy strength	103.8	103.1	0.7	0.92
Udder	105.7	105.3	0.4	0.95
Feet&Legs	103.3	102.1	1.2	0.92

GEBV reliability

Trait	PSR	BLEND	diff
Frame	64.5	53.8	10.7
Dairy strength	57.7	53.8	3.9
Udder	66.2	63.3	2.9
Feet&Legs	55.3	52.1	3.2

Blending vs. PSR

GEBV	~N (100, 4)			
Trait	PSR	BLEND	diff	corr
Frame	103.3	102.9	0.4	0.86
Dairy				
strength	103.7	103.2	0.5	0.92
Udder	106.4	105.8	0.6	0.95
Feet & Legs	103.0	102.5	0.5	0.92

GEBV reliability

Trait	PSR	BLEND	diff
Frame	64.5	53.8	10.7
Dairy strength	57.7	53.8	3.9
Udder	66.2	63.3	2.9
Feet & Legs	55.3	52.1	3.2

Return of the Bias

CRV

Mean difference of GEBV from PSR and blending vs. mean difference GEBV from blending with PA or SIx

Trait	Diff GEBV (psr - blend)	Bias cause by PA *
		Dias cause by TA
Milk	198,5	190,0
Fat	8,1	8,4
Protein	6,8	6,7
Somatic cell count	-0,2	n/a
Frame	0,4	n/a
Dairy strenght	0,5	n/a
Udder	0,6	0,7
Feet & Legs	0,5	0,7

Bias = (GEBV from PA) – (GEBV from SIx) for young bulls without daughters (memo 'Bias in integrated breeding values', 2009, R&D/09.0085/HE/GvO)

Blending vs. PSR

GEBV			~N (1	00, 4)
Trait	PSR	BLEND	diff	corr
Frame	104.0	103.6	0.4	0.86
Dairy strength	103.8	103.1	0.7	0.92
Udder	105.7	105.3	0.4	0.95
Feet&Legs	103.3	102.1	1.2	0.92

Trait	PSR	BLEND	diff
Frame	64.5	53.8	10.7
Dairy strength	57.7	53.8	3.9
Udder	66.2	63.3	2.9
Feet&Legs	55.3	52.1	3.2

Blending vs. PSR in short

- For EXT (and PRD) we see a re-introduction of bias in GEBV
 - GEBV based on PA, where it was a PI
 - Correction needed
- The GEBV from PSR have greater reliability then GEBV from blend
 - Possibly an effect of multi-trait BVE
 - Can it be confirmed?
- → New validation study predicted vs. realized reliability
 - Using Fertility as a case study

- Predicted reliability is R²_{gebv} from PSR BVE
- Compare predicted to realized reliability, based on R²_{ebv}

$$R^{2}_{real} = (r_{ebv,gebv} / \sqrt{R^{2}_{ebv}})^{2}$$

- Example: Three fertility traits
 - ICI : Interv. Calving 1st ins.
 - CI : Calving interv.
 - IFL : Interv. 1st last insemination ~ 43% of FERT
- ~ 57% of FERT on ~ 43% of FERT

Realized reliability of raw DGV ~ 0,65

Validation 2012: Reference = bulls with phenotype EDC > 10
→ predicted rel. Cl > 0.80
(?) Effect of multi-trait estimation?

Validation 2012: Reference = bulls with phenotype EDC > 10 → predicted rel. Cl > 0.80, realized = 0.55 << DGV

Validation 2014: Reference = bulls with phenotype rel. > 50% → predicted rel. CI = 0.62

Validation 2014: Reference = bulls with phenotype rel. > 50% → predicted rel. CI = 0.62, realized = 0.63

→ In line with realized rel. DGV

- Change in definition of reference population increased accuracy of DGV validation (R²_{dgv} and R²_{pi})
 - Better validation results \rightarrow More accurate $r_{q,psr}$
 - predicted rel. ≈ realized rel.
- Predicted and realized reliability of PSR GEBV ≈ R²_{add}
 - Hence reliability_{psr} ~ reliability_{blend}
 - MT-effect on reliability is not real

General conclusions

- Method of Mantysaari and Strandén (2010) seems to work well, results are according to expectations
- GEBV validation shows that increase in reliability (MT setting) is comparable to old blending method.
- Some BIAS left in CONF (and PROD) when using PA + PSR instead of PI + PSR
- First implementation in December 2014

General conclusions: Bias

- Two sources of bias
 - Genomic pre-selection
 - Bull dams
- Genomic pre-selection: PSR system takes care of this
- Bull dams: Not solved
 - Possibly issue even in Single Step Genomics
 - Young bulls without daughters do not receive PSR GEBV
 - Receive integrated GEBV (blending).
- Next step: Single Step Genomics

THANK YOU

