Technical options for all-breed Single Step GBLUP for US dairy cattle

- Andres Legarra^{1,2(ad honorem)}, <u>andres legarra@uscdcb.com</u> Matias Bermann², Paul M VanRaden³,
 - Ezequiel L Nicolazzi¹, Rodrigo R Mota¹, Joe M Tabet², Daniela Lourenco², Ignacy Misztal²
 - 1 Council on Dairy Cattle Breeding, Bowie, MD
 - 2 University of Georgia, Athens GA
 - 3 AGIL, United States Department of Agriculture, Beltsville, MD

CDCB has

- -8M genotyped animals imputed at -79K
- ~100M animals in pedigree
- ~30 "normal" (yield, health, calving ease...) traits + ~20 "type" traits
- 8K to 50M animals in data depending on the trait
- 6 breeds highly unbalanced, crosses, all-breed evaluation
- we receive pedigree and genotypes from all over the world
- Here I present choices to test & run ssGBLUP for CDCB

Trimming pedigree

- In BLUP, we only need animals in data and their ancestors
- a Python program trimming pedigree takes ~10 minutes
- in fertility data: reduction from ~100M to ~60M pedigree

als in data and their ancestors pedigree takes ~10 minutes om ~100M to ~60M pedigree

Metafounder covariance for missing pedigree

- 5%–10% missing pedigree
- We used ~400 metafounders based on base allele frequencies (from imputation run) and increase of inbreeding (see recent GSE paper)
- a parallel analysis by Joe Tabet tried
 J-factors giving slightly more bias
 and noisier UPG solutions

Trimming genotypes in ssGBLUP

- for sure keep genotypes of animals that either "have records" or "have progeny with records"
- if not the case, do we keep them?
 - if both parents genotyped, the genotype provides Ø information
 - if one (or both) parent(s) is NOT genotyped, the genotype improves a bit the **H**-relationship of parent(s)
 - we consider that this improvement is negligible, so we don't keep them
- We therefore keep genotypes that either "have records" or "have progeny with records":
 - reduction from 8M genotypes to 2M "useful" genotypes
- offspring

the US reference population now consists in 1.7M cows with records and >30K bulls with phenotyped

Approaches for Single Step GBLUP

- relationship-based (G_APY, "GT et al. 2017)
- SNP-based (Legarra and Ducroo 2016)
- No free lunch
- They usually involve either appr or complex programming

relationship-based (G_APY, "GT BLUP", Misztal et al. 2014, Mantysaari

• SNP-based (Legarra and Ducrocq 2012, Liu et al., 2014, Fernando et al.

They usually involve either approximations, or some kind of blending,

Approaches for Single Step GBLUP

- Why we like APY
- relationship-based
 - incidence matrices of effects are sparse
 - G_APY reduces *enormously* the size of genomic data to handle
 - fast convergence of iterative solvers for MME, good condition number
 - you can use "regular" double precision "multipliers" (Lapack, MKL, etc)
 - flexible: fractional genotypes, MIR readings, -omics ...

Approaches for Single Step GBLUP

- Why we don't like APY
- need to choose an informative, "repeatable" core • "random" is not a realistic or practical option for dairy "proven bulls" is not any more a realistic option no realistic way of doing matrix computations (e.g. PCA, Pocrnic et al. 2022) in 2M genotypes

Choice of Core

- We want a "democratic" core population
- For each breed you have a size of core
- Select "proven" genotyped bulls •
 - Holstein: >500 daughters with records
 - other breeds >100 daughters with records •
- select a sample of genotyped reference cows
 - tag cows with records
 - select 1 cow every n based on ID until fill in the available spots

Breed	# of	Breed	# of Sires+ Cows	Core
	Genotypes		in Core	98%eigenvalues
Ayrshire	1,608	AY	311 + 1,175	(all animals)
Brown Swiss	9,560	BS	611 + 4,313	5K
Guernsey	3,561	GU	219 + 3,258	(all animals)
Holstein	1,669,795	HO	6,890 + 8,113	15K
Jersey	300,976	JE	3,186 + 11,883	15K
Crossbreds	56,528	XX	141 + 4,616	5K

- Core: ~45K animals
- Non-core: 2M animals
- •

Reference population is the sum of core and non-core [and does include crossbreds]

Preparation of APY

- Once we have the flags core-noncore and the genotypes
- Build by chunks the G_APY matrix (all by MKL Lapack)
 - Biggest chunk: $G_{noncore,core}$ and its reciprocal in G_{APY}^{-1} of size 2M x 45K
 - G_{APY}^{-1} stored double precision: \approx 720 Gigabytes

Memory mapping

- use "memory mapping" mmap() to handle G_{APY}^{-1}
- A memory-mapped file is a segment of virtual memory^[1] that has been assigned a direct byte-for-byte correlation with some portion of a file [...] this correlation between the file and the memory space permits applications to treat the mapped portion as if it were primary memory.
- 720 Gb RAM become 720 Gb disk
- modern alternative to "read from file and compute" iteration-on-data

Running of APY

- PreGSf90: Set up G_{APY}^{-1} (with blending of [5% or 10%] $A_{\Gamma 22}$).
 - RAM \approx 720 Gigabytes [not using mmap()]
- Blup90iod3 (PCG iteration on data)
 - uses "memory mapping" mmap() to handle G_{APY}^{-1}
 - As a result, only 120 Gb (non-genomic parts, including the 4 \times 60M animals GEBVs...) are needed for the iteration
- accf90GS2 for reliabilities (Bermann et al 2022a) also uses mmap()
- backsolving SNP solutions only needs "core" animals (Bermann et al. 2022b)

Rough timings and memory

- Previous editings perhaps 3h may be improved
- 4 fertility traits, 50M records, 60M in pedigree, ~2M animals genotyped, ~500M equations
- using 16 threads
- Prep of G_{APY}^{-1} : 16h, 720 Gb RAM
- ssGBLUP itself: 22h , 120 Gb RAM, and 476 rounds of PCG
- Genomic reliabilities (include blending): ~8h per trait, 120 Gb RAM
- Backsolving for SNP solutions: negligible
- similar numbers as Cesarani et al. 2022

76 rounds of PCG ~8h per trait, 120 Gb RAM

It works (Joe Tabet in prep.)

Slopes b1 within Interbull limits

Bias: ssGBLUP < BLUPMetafounders < (UPG + Jfactors)

LR correlations slightly better than (not shown here) 2– step at CDCB evaluations

Correlations

Correlation	ssGBLUP_MF10	ssGBLUP_UPG	PBLUP_MF
¹ HO_CCR	0.87	0.85	0.54
¹ HO_DPR	0.90	0.89	0.49
² JE_CCR	0.88	0.81	0.56
² JE_DPR	0.86	0.86	0.65

Improvement?

- Maybe we don't need it
- we need to benchmark and play with number of threads • with some optimization in the pipeline and threads, time: ~2 days Anyway, some long-term perspectives just in case
 - G_{APY}^{-1} fully run in mmap()
 - or, G_{APY}^{-1} can be "updated" from previous runs
 - Reliability approaches can be optimized

Acknowledgments

- Participating **dairy producers** for supplying data
- DHI organizations and DRPCs for processing and relaying the information to the Council on Dairy Cattle Breeding (CDCB)
- Purebred breed associations for providing pedigree data
- Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by CDCB
- CDCB is an equal opportunity provider and employer

Picture L Chaumonnot

