2015 Interbull Technical Workshop and Industry Meeting February 24-25, Walsrode, Germany

Monitoring U.S. genetic evaluations for the influence of Genomic Pre-Selection

P.M. VanRaden, J.R. Wright and T.J. Lawlor*

Update on 2013 talk plus more

Measuring genomic pre-selection in theory and in practice

Paul VanRaden and Jan Wright Animal Improvement Programs Lab, Beltsville, MD <u>Paul.VanRaden@ars.usda.gov</u>

Plan to keep genetic evaluations unbiased.

- Monitor genetic evaluations for potential sources of bias from genomic pre-selection
- Short term: as we learn more improve current procedures.
 - Prevent genomic selection from impacting our traditional evaluations.
- Longer term: Develop better genetic evaluation models.
 - Single-Step utilizing recursion to compute the inverse of the genomic relationship matrix

Lots of	Genotyped				Imputed		Total
Genomic	Proven Male	Female with records	Young Male	Female without records	Older Female	Young Female	
Testing	26748	111685	107053	461699	3221	1499	711905

Growth in Embryo Transfer

Decline in number of breeders of bulls

Top Proven Bulls*: Opportunity for Genomic Selection

Are some bulls being bred to "better" mates ?

Proven bulls

- Top 50
- Daughters have records in 2013
- Daughters did not have any records in 2010
- Do Genomic PTAs of the mates differ from their Traditional PTAs?

Proven bulls from 2013 talk Genomic Pre-Selection of mates was small

Group 1 Realized Mate Bias

Trait	Mean	SD	Min	Max
NM\$	2	4	-5	13
Protein	0	0	-1	1
Prod Life	.0	.0	.0	.1
Dtr Preg Rate	.0	.0	.0	.1
SCS	.00	.00	01	.01
Final Score	.00	.01	04	.02
Udder Depth	.00	.01	02	.02

Paul VanRaden

Interbull annual meeting, Nantes, France, August 2013 (11)

Genomic PTA – Traditional PTA

Top 50 Proven bulls

August 2013

December 2014

-Daughters have records in 2013
-Daughters did not have any records in 2010 -Daughters have records in 2014
-Daughters did not have any records in 2011

Do Genomic PTAs of the mates differ from their Traditional PTAs?

Changes to evaluation system (December 2013) Genomic weighting and deregression improved

- Less weight placed on cow's Traditional PTA
- Deregress the Traditional PTAs jointly across animals (use matrix instead of simple one at a time) dam only gets credit for own records and non-genotyped progeny, not genotyped sons or daughters

Modifying the deregression procedure can reduce some of the potential source of bias

Little evidence of Genomic Pre-Selection

August 2013

December 2014

Group 1 Realized Mate Bias

Trait	Mean	SD	Min	Max	
NM\$	2	4	-5	13	
Protein	0	0	-1	1	
Prod Life	.0	.0	.0	.1	
Dtr Preg Rate	.0	.0	.0	.1	
SCS	.00	.00	01	.01	
Final Score	.00	.01	04	.02	
Udder Depth	.00	.01	02	.02	
					US

Mean	SD	Min	Max
1	2	-1	8
0	0	0	0
.0	.0	.0	.2
.0	.0	.0	.1
.00	.00	01	.00
01	.01	05	.00
01	.01	04	.04

Interbull annual meeting, Nantes, France, August 2013 (11)

Paul VanRaden 👘

Opportunity to select daughters based upon early genomic results Progeny of top 50 Proven bulls

Percent genotyped daughters with Records

Percent daughters with records is <u>unrelated</u> to genetic merit of the Sire

Percent genotyped daughters with Records

Difference between groups of daughters shows little relationship with Genetic Merit of the Sire

NM\$ of daughters <u>with</u> records versus NM\$ of daughters <u>without</u> records

Best daughters could be selected to obtain a record or Best daughters could be selected to be flushed

Best daughters selected to obtain a record?

No real pattern for the daughters of the top bulls

Largest differences are related to small NUMBER of daughters

Little evidence of Genomic Pre-Selection

Mates of Young Bulls

Young bulls

- Top 50, born 2009 and 2010
- Study calves born in USA
- Will pre-selected mates cause bias?

Opportunity for genomic pre-selection amongst young bulls Born 2009 or later - No daughters with records

Percentage of Genotyped Mates Group 2 bulls ranked by NM\$

Year later - More opportunity for genomic pre-selection Born 2010 or later - No daughters with records

Percentage of genotyping not related to merit of Bull

Little evidence showing top bulls have been selectively bred to mates with higher than "recorded" Mendelian Sampling

August 2013

Group 2 Future Bias from Mates

Trait	Mean	SD	Min	Max
NM\$	8	9	0	33
Protein	0	0	0	1
Prod Life	.1	.1	.0	.5
Dtr Preg Rate	.1	.1	.0	.3
SCS	01	.01	03	.00
Final Score	.02	.03	01	.10
Udder Depth	.03	.04	01	.13

December 2014

Mean	SD	Min	Max
5	3	0	11
0	0	0	1
.1	.0	.0	.1
.1	.0	.0	.1
.00	.00	01	.00
02	.02	08	.00
01	.01	04	.02

Interbull annual meeting, Nantes, France, August 2013 (12)

Genomic PTAs are not much different than Traditional PTAs

What about elite females?

Dams* with most genotyped daughters.

Percentage of <u>daughters</u> of dams_that are genotyped

Percentage of <u>SONS</u> of dams that are genotyped

NM\$ of daughters of dams with records versus

NM\$ of daughters of dams without records

Differences between groups is evenly distributed

No relationship between a "favorable" genomic test leading to a lactation record

(for either high or low families)

NM\$ of daughters with a lactation

No evidence of genomic pre-selection

Potential bias for dams with highly selected sons Some of this bias is removed by deregression Large number of daughters dilute bias

Future Bias – Dams of Young Bulls

- > Dams with ≥ 1 sampled son born 2008 to 2013
- Son selection differential = ∑(GPTA – PA) / # of sons sampled
- Dam's bias = 2 * sons' selection differential * (DE from sampled sons) / (total conventional DE)
 - DE = daughter equivalents or EDC

An extreme 2013 6 sons selected out of 29

An extreme 2014 5 sons selected out of 20

interbuli technical workshop, Germany, February 2015 (4)

Paul VanRaden

USDA

For illustration only

August 2013: 404

Example Dam

- > 29 sons genotyped, 6 selected, each will provide 5.4 DE
- Son selection differential for milk = ∑(GPTA – PA) / 6 = 583 pounds
- > 30 daughters, each provide 1.5 DE
- > 8.3 DE from PA, 7.8 from records
- Dam's future bias = 2 * 583 * 6 * 5.4 / [8.3 + 7.8 + 6 * 5.4 + 30 * 1.5] = 404 USDA

Paul VanRaden

Interbull annual meeting, Nantes, France, August 2013 (14)

December 2014: 275

Example Dam

HOUSA000062496855

- > 20 sons genotyped, 5 selected, each will provide 5.4 DE
- Son selection differential for milk = ∑(GPTA – PA) / 5 = 418 pounds
- > 26 daughters, each provide 1.5 DE
- > 8.3 DE from PA, 7.8 from records

> Dam's future bias = 2 * 418 * 5 * 5.4 / [8.3 + 7.8 + 5 * 5.4 + 26 * 1.5] = 275 USDA

Interbull technical workshop, Germany, February 2015 (5

Paul VanRaden

Illustration of potential bias from genomic tested sons Bull dams of current top young bulls

August 2013

Expected Future Bias – Bull Dams

Trait	Mean	SD	Min	Max	
NM\$	29	33	-124	156	
Protein	1	3	-10	14	
PL	.3	.5	-1.7	2.0	
DPR	.1	.2	9	.9	
SCS	01	.04	22	.14	

December 2014

Mean	SD	Min	Max
24	29	-95	145
1	3	-9	12
.3	.5	-1.5	2.2
.1	.3	-1.3	1.2
01	.04	17	.13

Paul VanRaden

Conclusions

- Opportunity for genomic pre-selection continues to grow.
- Our estimates of genomic pre-selection are an approximation: many relatives, mates of ancestors, and contemporaries impact a genetic evaluation.
- To date, there is little evidence to support that genomic pre-selection is a major source of bias.
- This research will help us evaluate the benefits of better genetic evaluations when they are implemented.

Acknowledgements

Phenotypes, genotypes, and pedigrees were provided by the Council on Dairy Cattle Breeding