Improving single-step genomic prediction reliabilities for clinical mastitis in Nordic Red dairy cattle and Jersey by applying marker-specific weights A. Chegini¹, I. Strandén¹, E. Karaman², T. Iso-Touru¹, J Pösö³, G.P. Aamand⁴, M. H. Lidauer¹ ¹Natural Resources Institute Finland (Luke) ²Aarhus University, Denmark ³Faba co-op, Finland ⁴Nordic Cattle Genetic Evaluation, Denmark #### Introduction - In standard single-step genomic prediction equal SNP marker weights are assumed - The true state may deviate from this assumption - Markers may be in the range of influential genes or in proximity with them - It has been suggested to consider SNP marker-specific weights in genomic prediction #### **Hypothesis** If SNP marker weighting is beneficial, it might be more pronounced in low heritable traits and traits having large QTLs ## **Objectives** - Applying SNP marker-specific weights in single-step genomic prediction and comparing it to standard single-step genomic prediction - Testing with real data - → Model and data of the Nordic udder health evaluation #### **Data** - Breed-specific evaluations that include observations for clinical mastitis, test-day somatic cell score, and conformation traits - Data from Denmark, Finland and Sweden that were recorded since 1980 - Nordic Red dairy cattle (RDC) 75 million records from 5.6 million cows - Jersey (JER) 17 million records from 0.9 million cows #### **Trait definition** #### **Clinical mastitis (CM) traits:** CM11: -15 to 50 days in milk, first lactation. CM12: 51 to 305 days in milk, first lactation. CM2: -15 to 150 days in milk, second lactation. CM3: -15 to 150 days in milk, third lactation. #### **Correlated traits:** 3 somatic cell score (SCS) traits: 1st, 2nd, 3rd lactation test-day observations (transformed to logarithmic scale). fore udder attachment (UA): 1st lactation. udder depth (UD): 1st lactation. # **Summary statistics of studied traits** | Trait | R | DC | | JER | | | | |-------|------------|------|------|-----------|------|------|--| | | n | Mean | SD | n | Mean | SD | | | CM11 | 4,791,842 | 0.06 | 0.25 | 601,988 | 0.14 | 0.35 | | | CM12 | 4,641,064 | 0.06 | 0.24 | 590,198 | 0.11 | 0.31 | | | CM2 | 3,452,089 | 0.11 | 0.31 | 427,327 | 0.14 | 0.34 | | | СМЗ | 2,246,733 | 0.14 | 0.35 | 287,409 | 0.16 | 0.37 | | | SCS1 | 29,944,467 | 4.05 | 1.19 | 7,317,581 | 4.44 | 1.09 | | | SCS2 | 20,997,798 | 4.41 | 1.28 | 5,100,038 | 4.67 | 1.19 | | | SCS3 | 12,978,293 | 4.63 | 1.30 | 3,301,183 | 4.84 | 1.23 | | | UA | 1,161,944 | 5.58 | 1.36 | 307,635 | 5.47 | 1.17 | | | UD | 1,160,324 | 5.62 | 1.66 | 307,634 | 5.39 | 1.12 | | ## **Genotype data** - Only genotypes from individual born after 2008 were used, leaving **64,777** and **125,789** genotyped JER and RDC, respectively - 41,897 and 46,914 SNPs for JER and RDC, respectively ## **Genomic prediction model** - Multiple-trait random regression model (9 traits) - Same effects as in the official evaluation model (Negussie et al., 2010) - Additive genetic effects are modelled by covariance functions - An animal's breeding values are modelled by 12 random regression coefficients which correspond to the 12 largest eigenvalues of the originally estimated additive genetic (co)variance matrix - Single-step SNPBLUP for models with marker-specific weights - Residual polygenic proportion: 10% ## **SNP** marker weights Own set of weights for each trait *j* (eigenvalue) #### Weighting scenarios #### 1. Nonlinear: $${ m w}_{jk} = 1.25^{ rac{\left|\widehat{u}_{jk}\right|}{{ m sd}\left(\widehat{u}_{j}\right)}-2}$$, (VanRaden, 2008; Cole et al., 2009) #### 2. **2pqû**²: $$w_{jk} = 2p_k q_k \hat{u}_{jk}^2$$, (Falconer & Mackay, 1996) #### 3. 20SNP-window: Averaging the $2pq\hat{u}^2$ weights of 20 adjacent SNP markers (Zhang et al., 2016) #### Model validation - Validation method: Legarra & Reverter, 2018 - Reduced data: last four years of data were removed - Validation group: - Bulls with ERC = 0.0 in reduced data and ERC ≥ 2.0 in full data - Cows with ERC = 0.0 in reduced data and ERC ≥ 0.9 in full data - Validation traits: combined breeding values for CM and SCS - Weighting of traits: - CM combined (0.15, 0.15, 0.25, 0.45) - SCS combined (0.30, 0.25, 0.45) ## **Validation results (Legarra & Reverter)** #### **Clinical mastitis** | Breed | Sex | N | Weight | b ₀ | b ₁ | R ² | gain% | |-------|---------------------------|------------------|------------------|-----------------------|--------------------|--------------------|-----------------------| | RDC | Male
(Female) | 86 (8440) | Standard ssGBLUP | 0.002 (0.005) | 0.75 (0.87) | 0.50 (0.74) | - | | | | | Nonlinear | 0.001 (0.005) | 0.73 (0.85) | 0.51 (0.74) | 2.0 (1.1) | | | | | 2pqû² | 0.001 (0.003) | 0.68 (0.79) | 0.57 (0.78) | 13.8 (5.3) | | | | | 20SNP-window | 0.0004 (0.005) | 0.70 (0.85) | 0.49 (0.75) | - 1.6
(1.8) | | JER | Male
(Female) (| | Standard ssGBLUP | 0.013 (0.010) | 0.78 (0.89) | 0.65 (0.72) | - | | | | 115 | Nonlinear | 0.015 (0.012) | 0.77 (0.88) | 0.66 (0.73) | 0.5 (1.9) | | | | (8224) | 2pqû² | 0.010 (0.008) | 0.70 (0.79) | 0.66 (0.76) | (5.3) | | | | | 20SNP-window | 0.012 (0.011) | 0.74 (0.87) | 0.64 (0.74) | -2.4 (3.1) | # **Validation results (Legarra & Reverter)** #### **Somatic Cell Score** | Breed | Sex | N | Weight | b ₀ | b ₁ | R ² | gain% | |-------|-------------------------|--------------------|-------------------|--------------------|--------------------|--------------------|-------------------| | RDC | Male
(Female) | 125 (18112) | Standard ssGBLUP | 3.40
(6.11) | 0.86 (0.97) | 0.58 (0.77) | - | | | | | Nonlinear | 7.40 (6.84) | 0.83 (0.94) | 0.60 (0.78) | 2.6 (0.6) | | | | | 2pqû ² | 7.21
(5.82) | 0.77 (0.87) | 0.64 (0.79) | 11.1 (2.3) | | | | | 20SNP-window | 6.66 (6.63) | 0.82 (0.94) | 0.59 (0.78) | 2.5 (1.0) | | JER | Male
(Female) | 119 (6537) | Standard ssGBLUP | 8.17 (8.43) | 0.81 (0.97) | 0.61 (0.79) | - | | | | | Nonlinear | 7.80 (8.43) | 0.80 (0.96) | 0.63 (0.80) | 2.7 (0.9) | | | | | 2pqû ² | 4.06 (5.71) | 0.70 (0.87) | 0.65 (0.81) | 5.4 (2.8) | | | | | 20SNP-window | 7.55 (7.66) | 0.80 (0.95) | 0.64 (0.80) | 4.0 (1.3) | ### **Conclusions** - SNP marker-specific weighting - improved bias and prediction reliability - but not dispersion - Gain was higher in RDC than JER ## **BovReg** PARTNERS Thank you for your attention www.bovregproject.eu