

Introduction I

Introduction single step genomic evaluations
December 7, 2023
Pubished GEBV from pseudo-record system DGV fitted as correlated traits

Introduction II

Trigger

- Incorporate DGV information of underlying traits
- Without (increasing) number of correlated traits (runtime!)
- Improved transfer of DGV to official evaluations.
- Deregressed proofs as observations on actual traits
- No extra correlated pseudo-traits necessary
- Limiting run time evaluation (avoid fitting extra traits)

Challenges

1. Observations \rightarrow Breeding values
2. Number of repeat records $\boldsymbol{\rightarrow}$ Reliabilities

Observations

Deriving observation records from GEBV

Two step process

1. Deregression

- Linear deregression to remove national information from MACE proof

2. Transformation

- Based on approach already in use.
- Somewhat more formalized and simplified:

$$
0=\mathbf{T b}
$$

Observation: Deregression

For a list of eurogenomics bulls
External BV XBV
National BV EBV

Observation: Deregression

```
For a list of eurogenomics bulls
External BV XBV \(\Rightarrow\) DRP \(_{x}=P A+(X B V-P A) / r_{x} ; E O C x=\alpha{ }^{*} r_{x} /\left(1-r_{x}\right)\) National BV EBV \(\Rightarrow D^{2} P_{e}=P A+(E B V-P A) / r_{e} ; E O C e=\alpha{ }^{*} r_{e} /\left(1-r_{e}\right)\)
```

EOC = Expected Own Contribution; expected number of observation records

Observation: Deregression

For a list of eurogenomics bulls
External BV XBV \Rightarrow DRP $_{x}=P A+(X B V-P A) / r_{x} ; E O C x=\alpha{ }^{*} r_{x} /\left(1-r_{x}\right)$
National BV EBV $\quad \Rightarrow$ DRP $_{e}=P A+(E B V-P A) / r_{e} ; E O C e=\alpha{ }^{*} r_{e} /\left(1-r_{e}\right)$
EOC = Expected Own Contribution; expected number of observation records
Final result
$E O C=(E O C x-E O C e)$
DRP = [DRPx * EOCx - DRPe*EOCe] / EOC
(Pitkänen et al, 2019)

Observations: Transformation

The function

- b is a vector with n input DRP

$$
0=\mathbf{T b}
$$

-0 is a vector with m output observations
-T is a $m \times n$ transformation matrix

Observations: Transformation

The function
-b is a vector with n input DRP

- o is a vector with m output observations
- T is a $m \times n$ transformation matrix

The transformation matrix
Important to distinguish between:

- Input trait: Which traits have DRP records?
- Analyzed traits: Which traits are in the evaluation?
- Observed traits: Which traits have observations?

Usually 2 or all $\mathbf{3}$ categories are identical, but not always!

Observations: Transformation matrix

Transformation matrix T can be obtained relatively easily

$$
0=T b
$$

- Two 'phi'-matrices are needed that describe the relations between traits
- Matrix F describes relation between input and analyzed traits
- Matrix D describes relation between analyzed and output traits
- Additionally a genetic matrix \mathbf{G} is needed (the one in the evaluation)

$$
\mathbf{T}=(\mathbf{D G F})\left(\mathrm{FGF}^{\prime}\right)^{-1}
$$

Observaties: Transformation matrix conformation

For evaluations like Conformation
Single observation (lactation), single DRP

$$
0=T b
$$

Input, analyzed and observed traits are identical

- $\mathbf{F}=\mathbf{I}$ (identity matrix)
- $\mathrm{D}=\mathrm{I}$
- Result: $\mathbf{T}=(\mathbf{D G F})\left(\mathbf{F G F}^{\prime}\right)^{-1}=\mathbf{G G}^{-1}=\mathbf{I}$

$$
\mathbf{o}=\mathbf{T} \mathbf{b}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{b}=\mathbf{b}
$$

Observations: Transformation matrix index trait

For evaluations like Fertility, Udder health
Single GEBV/DRP; multiple underlying observed traits

$$
0=T b
$$

- $\mathbf{F}=\mathbf{w}^{\prime}=\left[\begin{array}{ll}0.410 .330 .26\end{array}\right] \leftarrow$ lactation specific weights
- $\mathrm{D}=\mathrm{I}$
- Result: $\mathbf{T}=\left(\right.$ DGF $\left.^{\prime}\right)\left(\text { FGF }^{\prime}\right)^{-1}=(\mathbf{G w})\left(\mathbf{w}^{\prime} \mathbf{G w}\right)^{-1}$

Observations: Transformation matrix index trait

For evaluations like Fertility, Udder health
Single GEBV/DRP; multiple underlying observed traits

- $\mathbf{F}=\mathbf{w}^{\prime}=\left[\begin{array}{ll}0.410 .330 .26\end{array}\right] \leftarrow$ lactation specific weights
- $\mathrm{D}=\mathrm{I}$
- Result: T = (DGF')(FGF' $)^{-1}=(\mathbf{G w})\left(\mathbf{w}^{\prime} \mathbf{G w}\right)^{-1}$
- Example: $\quad \mathbf{C}=\left[\begin{array}{ccc}1 & 0.7 & 0.6 \\ 0.7 & 1 & 0.8 \\ 0.6 & 0.8 & 1\end{array}\right] \quad \mathbf{V}=\left[\begin{array}{c}9 \\ 16 \\ 25\end{array}\right] \quad \boldsymbol{\rightarrow} \mathbf{G}=\left[\begin{array}{ccc}9 & 8.4 & 9.0 \\ 8.4 & 16 & 16 \\ 9.0 & 16 & 25\end{array}\right]$

$$
\mathbf{T}=\left[\begin{array}{l}
0.933 \\
1.048 \\
1.045
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
5.0
\end{array}\right] \quad \mathbf{o}=\mathbf{T b}=\left[\begin{array}{l}
4.7 \\
5.2 \\
5.2
\end{array}\right]
$$

Observations: Transformation Matrix Test Day Model

For random regression evaluations like Fertility, Udder health
Production test day model is an example that needs both \mathbf{F} and \mathbf{D} matrix

- INPUT : DRP from cumulative 305 day breeding values
- ANALYZED : Legendre regression polynomes
- OUTPUT : Production on day 60 of lactation

Construction of matrices

- For F 305 day factors needed:
- For \mathbf{D} factors needed for day 60 :

Observations: Transformation matrix TDM

Example: Three lactations, 5 legendre regressions per lactations

$$
\mathbf{F}=\mathbf{s} \otimes \mathbf{I}_{3}=
$$

$$
\mathbf{D}=\mathbf{t} \otimes \mathbf{I}_{3}=
$$

Observations: Transformation matrix TDM

Application example: Three lactations of milk production in kg

$$
\begin{gathered}
\mathbf{T}=\left(\mathbf{D G F} \mathbf{F}^{\prime}\right)(\mathbf{F G F})^{-1} \\
\mathbf{T}=\left[\begin{array}{rrr}
3.55 \times 10^{-3} & -3.59 \times 10^{-4} & -1.92 \times 10^{-4} \\
6.01 \times 10^{-5} & 3.52 \times 10^{-3} & -5.07 \times 10^{-4} \\
4.50 \times 10^{-4} & -1.33 \times 10^{-4} & 2.85 \times 10^{-3}
\end{array}\right] \\
\mathbf{b}=\left[\begin{array}{l}
+1100 \\
+1300 \\
+1400
\end{array}\right] \Rightarrow \mathbf{o}=\mathbf{T b}=\left[\begin{array}{c}
+3.2 \\
+3.9 \\
+4.3
\end{array}\right]
\end{gathered}
$$

Observations

Transformation for every animal with DRP with a simple function

Transformation matrix \mathbf{T} is a constant, needs to be constructed only once.
Accounts for genetic correlations among traits
Applicable to a variety of models, input DRP

Repeat records

Repeat records

Number of repeat records determines reliability of DRP information in genetic evaluations

At a reliability rof DRP we can calculate expected own contributions (EOC)

$$
\mathrm{EOC}=\frac{1-h^{2}}{h^{2}} \times \frac{r}{1-r}
$$

Example: If $h^{2}=0.20$ and $r=0.75$ then EOC $=3 \boldsymbol{\rightarrow}$ Number of repeat records

Repeat records

Number of repeat records determines reliability of DRP information in genetic evaluations

At a reliability rof DRP we can calculate expected own contributions (EOC)

$$
\mathrm{EOC}=\frac{1-h^{2}}{h^{2}} \times \frac{r}{1-r}
$$

Example: If $h^{2}=0.20$ and $r=0.75$ then EOC $=3 \boldsymbol{\rightarrow}$ Number of repeat records

But...

Calculated this way, the EOC is valid for single trait analysis only.

- Does not account for correlations between traits in MT evaluations

Determining number of repeat records

- Reliability is a function $\mathbf{r}=$ rel_liu $(\mathbf{G}, \mathbf{F}, \mathbf{Y})$
- \mathbf{G} is the genetic covariance matrix
- \mathbf{F} is a 'phi' - matrix comparable to before (for TDM: 305 day matrix)
- \mathbf{Y} is a MT-EDC matrix following Liu et al. (2001)
- But \mathbf{Y} is enumerated using \mathbf{D} (for TDM: day 60 matrix)

The objective is to find a $\mathbf{Y}_{\text {est }}$ such that $\mathbf{r}_{\text {est }} \approx \mathbf{r}_{\text {DRP }}$

Determining number of repeat records

- Reliability is a function $\mathbf{r}=$ rel_liu $(\mathbf{G}, \mathbf{F}, \mathbf{Y})$
- \mathbf{G} is the genetic covariance matrix
- \mathbf{F} is a 'phi' - matrix comparable to before (for TDM: 305 day matrix)
- \mathbf{Y} is a MT-EDC matrix following Liu et al. (2001)
- But \mathbf{Y} is enumerated using \mathbf{D} (for TDM: day 60 matrix)

The objective is to find a $\mathbf{Y}_{\text {est }}$ such that $\mathbf{r}_{\text {est }} \approx \mathbf{r}_{\text {DRP }}$

$\mathbf{Y}=40 Z^{\prime} \mathbf{R}^{-1} \mathbf{Z}$

- \mathbf{Z} is a genetic effect matrix comparable to \mathbf{D} (day 60 matrix) in the previous
- \mathbf{R} is the residual covariance matrix (the one used in analysis)
- \mathbf{O} is a diagonal matrix with number of repeats per trait

Repeat records: Iterative approach

Goal: To optimize the matrix O such that $\mathbf{r}_{\text {est }} \approx \mathbf{r}_{\text {DRP }}$
Start: Let $O=\mathbf{E}$ (single trait EOC of input traits, DRP)

1. Calculate $\mathbf{Y}=4(\mathrm{OZ})^{\prime} \mathbf{R}^{-1} \mathbf{Z}$
2. Calculate $\mathbf{r}_{\text {est }}=r e l _l i u(\mathbf{G}, \mathbf{F}, \mathbf{Y})$
3. Compare $r_{\text {est }}$ with $r_{\text {DRP }}$
a. If $r(i)_{\text {est }}>r(i)_{\text {DRP }} \rightarrow O(i, i)=O(i, i)-1 \quad$ (minimum value 0$)$
b. If $r(i)_{\text {est }}<r(i)_{\text {DRP }} \rightarrow O(i, i)=O(i, i)+1$
4. Repeat until convergence or until O stops changing.

Final remarks

Method provides capability to use DRP as observations on existing traits

Unified approach, valid for all types of models, DRP

- Single trait, indices, random regressions

No additional correlated traits

- No need for additional software
- Same statistical model, parameters and matrices
- Same output format

Approach is being implemented
Application to all test day model traits and claw health traits
Further implementation for all evaluations planned for later this year

