

Interbull Industry Meeting 25th February 2015, Verden

Identification and Management Of Deleterious Mutations in Fleckvieh

Dr. Hubert Pausch

Chair of Animal Breeding, Technische Universität München, Freising-Weihenstephan hubert.pausch@tierzucht.tum.de

Deleterious mutations in Fleckvieh

(recessive inheritance, causal mutation known)

- Identified via phenotype-driven screens
 - Arachnomelia (Buitkamp et al., 2011)
 - Thrombopathia (Jansen et al., 2013)
 - Bovine male subfertility (Pausch et al., 2014)
 - Zinc deficiency-like syndrome (Jung et al., 2014)
 - Dwarfism (2013)
- Identified via genotype-driven screens
 - Fleckvieh Haplotype 2 (Pausch et al., 2015)
 - Fleckvieh Haplotype 4 (Pausch et al., 2015)
 - Braunvieh Haplotype 2 (2014)

Deleterious mutations in Fleckvieh

(recessive inheritance, causal mutation known)

- Identified via phenotype-driven screens
 - Arachnomelia (Buitkamp et al., 2011)
 - Thrombopathia (Jansen et al., 2013)
 - Bovine male subfertility (Pausch et al., 2014)
 - Zinc deficiency-like syndrome (Jung et al., 2014)
 - Dwarfism (2013)
- Identified via genotype-driven screens
 - Fleckvieh Haplotype 2 (Pausch et al., 2015)
 - Fleckvieh Haplotype 4 (Pausch et al., 2015)
 - Braunvieh Haplotype 2 (2014)

Recessive phenotypes in Fleckvieh

Arachnomelia

Causal gene: *MOCS1* Causal mutation: fs457X Buitkamp et al., BMC Genetics 2011, 12:11

Zinc deficiency-like syndrome Causal gene: *PLD4* Causal mutation: p.Trp215X Jung et al., *BMC Genomics 2014, 15:623*

Thrombopathia

Causal gene: *RASGRP2* Causal mutation: p.Leu234Pro

Boudreaux et al., Vet Pathol. 2007; 44(6):932-5 Jansen et al., BMC Genomics 2013,14:446

Dwarfism Causal gene: XXXX Causal mutation: fsX

Pfitzner, LMU

Bovine male subfertility

- Male reproductive ability (*a.k.a. sire conception rate*)
 - proxy for insemination success per bull
 - highly correlated with the non-return rate

Insemination success with semen of subfertile bulls

Name	Birth year	Number of inseminations	Successful inseminations	Male reproductive ability
subfertile_1	2003	1344	15 (1.12%)	-32
subfertile_2	2009	986	23 (2.33%)	-27
subfertile_3	2009	671	9 (1.34%)	-25
subfertile_4	2008	699	4 (0.57%)	-30
subfertile_5	2009	849	14 (1.65%)	-28
subfertile_6	2008	777	5 (0.64%)	-32

GWAS for MRA (57 cases vs. 8179 controls, 650K SNP)

Homozygosity mapping on bovine chromosome 19

Haplotype analysis

- 40 subfertile bulls are homozygous for the haplotype
- None of the bulls with normal fertility is homozygous
- Frequency of the haplotype is 7.2%
- MRA of heterozygous bulls is normal

=> recessive inheritance

Pedigree analysis

HAXL is the founder of the mutation

- birth year 1966
- most important ancestor of the FV population
- present in >98%
 of all pedigrees

Ejaculate parameters of subfertile bulls are normal (=idiopathic subfertility)

Ejaculate parameters in fresh semen:

	N	Ø number of ejaculates	Ejaculate volume (ml)	Sperm count (Mio/µl)	Spermatozoa with progressive motility (%)
wt/wt	177	52	5.14±1.08	1.53±0.22	74.73±5.21
wt/mt	21	52	5.15±1.03	1.47±0.23	75.15±4.92
mt/mt	5	63	5.56±1.75	1.42±0.29	70.82±7.06

Ejaculate parameters after thawing:

	N	Motile spermatozoa (%)	Vital spermatozoa (%)
wt/wt	10	53±9	56±11
wt/mt	10	61±13	65±11
mt/mt	10	48±13	51±12

Hunting down the causal mutation

- Sequence data of 43 Fleckvieh animals
 - 6 of them are carriers of the subfertility-associated haplotype
- Tasks:
 - Identify variants that are heterozygous in 6 haplotype carriers and homozygous for the reference allele in all non-carriers
 - Predict the consequence of compatible variants (= *functional annotation*)
 - Identify putatively deleterious mutations

A nonsense mutation in *TMEM95* is perfectly associated with MRA

TMEM95 is located at the plasma membrane of spermatozoa of fertile bulls

Origin: Sabine Kölle, Urologische Klinik und Poliklinik, LMU München

TMEM95 is missing in spermatozoa of subfertile bulls

Origin: Sabine Kölle, Urologische Klinik und Poliklinik, LMU München

Identification of deleterious alleles via homozygosity depletion

- 25,000 animals genotyped (50K)
- Sliding window-based approach
- Identification of FH1-FH4
 - associated with embryonic losses and juvenile mortality
- Fleckvieh Haplotype 2 (FH2)
 - Chromosom 1: 96,000,000 bp 98,000,000 bp
 - $freq_{HT} = 4\%$
 - 36 homozygotes expected but only 2 observed
 - P=1.16 x 10⁻¹³

Hunting down the causal FH2mutation

- Eight FH2-heterozygous animals have been sequenced
 - these carry a 4bp deletion in SLC2A2 introducing premature translation termination
- Recessive mutations in SLC2A2 cause Fanconi-Bickel syndrome in humans
 - impaired insulin/glucose metabolism
 - => severe growth retardation
 - => liver damage

Fanconi-Bickel syndrome

4 years

10 years

12 years

52 years

Santer et al., (1998), Eur J Pediatr 157: 783-797

Fanconi-Bickel syndrome in cattle?

courtesy of H. Schwarzenbacher, ZuchtData

11

Growth retardation starts after weaning

Management of deleterious alleles in Fleckvieh

- Establishment of a task force 'Genetic characteristics'
 - Members from
 - Breeding organisations
 - Artificial insemination companies
 - Genetic evaluation team
 - University
 - Tasks:
 - Evaluation of scientific results
 - Which genetic characteristics should be considered in breeding programs and how?
 - Dissemination of information

=> RECOMMENDATIONS

Results of the task force

• Transparency

- dissemination of full information to all parties involved
- Declaration of carrier bulls
 - direct gene tests for all artificial insemination bulls as soon as they are available
 - genetic characteristics are listed along with the breeding value information
- Classification of genetic disorders depending on
 - the phenotype of homozygotes
 - the allele frequency of deleterious alleles
 - pleiotropic effects / penetrance

Recommendations

• "Do not select carriers"

e.g. for Arachnomelia and for the zinc deficiency-like syndrome
 RATIONALE: low frequency, animal welfare

• "Select only superior carriers"

- *e.g.* for Fleckvieh Haplotype 4 (embryonically lethal)
 RATIONALE: no immediate phenotype manifest
- "Do not select homozygous bulls"
 - *e.g.* for bovine male subfertility
 RATIONALE: heterozygotes are fertile, no effect in females

Declaration in databases

💳 RINDERZUCHT AUSTRIA 💳

ZuchtData - Zuchtwertdatenbank

		HEND DE 09 408 geb.: Züchter: Station:	DEL 22798 28.03.2006 <u>EUROgeneti</u> Neustadt/Ais	HB: 10/169975 <u>K</u> sch	FH2, ZDL, TP
ABSTAM	IMUNG				<u>Stammbaum</u>
HERICH AT 671.844.642		HERON AT	r 444.171.94 ⁻	1	HORWEIN
ZW: 111 / 1	08 / +399 -0.32 -0.02	BORIS AT	796.535.633		GS STRICH
LINA DE 09 36323018 ZW: 94 / 103 / +108 +0.06 -0.05 2/1 - 12189-4.18-3.48-934 HL: 1 12189-4.18-3.48-934		HOCHREP	DE 09 1519	3492	HODACH
		LOROSA [1/1 - 7078	DE 09 32878 -4.27-3.74-56	743 57	POSTNER
ZUCHTW	/ERTE (AT/DE, 02.12.2014) N	IK <u>Historie</u>	GZW	-2, MW -2, FW +1, F	TT+0 gGZW 101 (90)
MILCH		-7 -0.04 -3	+0.00 +0		MW 99 (93)
100-Tg.: 1.Lakt.: 2.Lakt.:	91 2425 - 4,08 - 3,22 - 177 79 6511 - 4,18 - 3,49 - 500 62 7409 - 4,18 - 3,52 - 570	Stall: 7389 7429 7580	9 Tö int.: 5	96 PM 96 8 74 8	

Unresolved questions...

- Should haplotypes be considered for breeding decisions without knowing the causal mutation?
- How to comply with export regulations?
- What is the optimal strategy to manage dozens of genetic characteristics?
- etc.

Conclusions

- Eight deleterious alleles are (currently) considered in the Fleckvieh breeding population
- Sequence data revealed many more putatively deleterious alleles
- Knowing a population's genetic load is a prereqisite for sustainable breeding decisions
- Animals carrying deleterious alleles need to be identified

Acknowledgements

- Dr. Hermann Schwarzenbacher, ZuchtData, Vienna
- Chair of Animal Breeding, TU München
- German-Austrian working group 'genetic characteristics'
- ASR, AGÖF, FBF, DHV

Thank you for your attention!