

ICAR & INTERBULL MAY 19-24, 2024 SLOVENIA

The use of beef semen in Italian Holstein cows

Martino Cassandro

General Manager, ANAFIBJ
Technical Head, FedANA
Full professor, University of PADOVA

1. Italian beef market circumstances

- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian
 Holstein cows
- 4. Factors affect beef semen use
- 5. Breed effect on Stillbirth, Calving easy and Gestation lenght
- 6. Conclusions

OUTLINE

your **COW** our **FUTURE**

In Italy we produce 52% of beef

In Italy we import 48% of beef from abroad

Italian beef cattle breeders take more abroad every year

1 billion euro

to buy young cattle (broutard/ristalli/weaned calves) to fatten

Slaughtering year 2021 - Vitellone/Scottona (12-24 months of age)			
item	N. of animals	Animals in %	
Born in Italy	479.973	33.54	
Imported abroad	<u>951.064</u>	<u>66,46</u>	
Total need for Italy market	1.431.037	100	

Year 2021: The number of young cattle purchased abroad to be fattened in Italy n. 951,064 x approximately 1,200 euros/head = **Euro 1,141,276,800**

INCREASE THE WEANED CALVES PRODUCED IN ITALY IN COLLABORATION WITH DAIRY COW BREEDERS!

Stipulate supply chain commercial agreements

- Use of sexed semen for internal replacement (dairy cow herds)
- Use of semen from beef bulls to obtain beef crossbreeds
- Application of quality and sustainability regulations
- Organize collection of unweaned calves in collection centers
- Organization of weaning centers
- Fattening in protected stables
- Certification of fattened cattle and use of the brand of Italian consortia

OUTLINE

- 1. Italian beef market circumstances
- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian Holstein cows
- 4. Factors affect beef semen use
- Breed effect on Stillbirth, Calving easy and Gestation length
- 6. Conclusions

Italian dairy cattle skyline

31 dairy cattle breeds in milk recordings (closed lactations, source: AIA, 2021)

ANAFIBJ in numbers

- 2 Herdbooks (Holstein and Jersey)
- third one is working progress (Brown)
- ≈ **10.000** members
- > 1.100.000 registered cows
- ≈ **800.000** young stock
- 27 employes
- 6 bianconero magazine /year
- yo breeding values
- 49 runs/yea

ANAFIBJ is one

of the 15

members

of FEDANA

	Records processed (2023)	Numbers
>	Pedigree data-records	20,863,419
	Cow lactation records	32,822,933
	Evalutaiotn Scoring records	11,287,374
	Cows changing herds	2,769,903
	Grade animals	15,851,240
	Managment herd registration	58,379
	Cow's Insemination records	69,991,452
	Genealogical Certificate (2023)	5,142

Italian Holstein population / around the world

(WHFF, 2023)

Country	Rank	Total HF cows	Rank	HB-Registered HF cows	Rank	% of di Vacche Holstein iscritte su Totali
United States	1	7.990.000	5	1.000.000	6	12%
France	2	2.674.000	2	1.244.946	4	46%
Germany	3	2.345.673	1	1.656.116	3	71%
United Kingdom	4	1.600.000	6	650.000	5	41%
ITALY	5	1.500.000	4	1.148.705	2	77%
The Netherlands	6	1.152.495	3	1.152.495	1	100%

1. Italian beef market circumstances

- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian
 Holstein cows
- 4. Factors affect beef semen use
- 5. Breed effect on Stillbirth, Calving easy and Gestation length
- 6. Conclusions

OUTLINE

Crossbreeding and Beef on Dairy in Italian HF population

Trend of breed of sire use for BoD in Italian Holstein population

Market average Value of males and females calves of different genotypes, (Trento province, FPA-TN)

P U R E

F

Avg. 3,1 Euro / kg

Avg. 6,4 Euro /kg

Breed	Avg. weight	Mean /Euro/kg	Average value
Holstein Friesian (HF)	62,9	€2,07	€144,94
Brown Swiss (BS)	71,1	€1,75	€124,67
Simmental (Sim)	72,8	€4,50	€327,79
Rendena	70,7	€3,64	€257,23
Alpine Grey (AG)	73,3	€3,65	€267,65
BB x Brown Swiss	72,9	€6,48	€472,63
BB x Holstein Friesian	72,7	€5,58	€405,66
BB x Simmental	73,6	€7,42	€545,70
BB x Rendena	73,5	€6,70	€492,59
BB x Alpine Grey	73,7	€6,67	€491,33
Lim x Brown Swiss	72,7	€5,44	€395,40

1. Italian beef market circumstances

- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian
 Holstein cows
- 4. Factors affect beef semen use
- 5. Breed effect on Stillbirth, Calving easy and Gestation length
- 6. Conclusions

OUTLINE

FREQUENCY OF THE USED OF BEEF SEMEN PER MONTH

FREQUENCY OF THE USED OF BEEF SEMEN PER PRODUCTION LEVEL

% of dairy herd for % of beef semen used

DAIRY HERDS classes for % of use BEEF semen within Holstein in official HB data of ANAFIBJ

- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian
 Holstein cows
- 4. Factors affect beef semen use
- 5. Breed effect on Stillbirth, Calving easy and Gestation length
- 6. Conclusions

OUTLINE

BREED EFFECT analyses for STILLBIRTH, CALVING EASY and GESTION LENGTH EDITING

Starting observations (calvings) = 949,409

Editing:

- delete sire breeds which recorded a frequency <1%, i.e., Maremmana (30), Podolica (34) and Romagnola (69);
- delete cows for which we did not know date of birth;
- retention of cows born from 1985 onwards;
- retention of calves born between 1995 and 2023
- retention of parity orders from 1 to 10. Parities ≥5 were grouped in one class ('5');
- retention of records with the following age at calving within parity:
 - 18 ≤ cow age ≤ 40 for parity = 1
 - 30 ≤ cow age ≤ 58 for parity = 2
 - 42 ≤ cow age ≤ 76 for parity = 3
 - 54 ≤ age of cow ≤ 94 for parity = 4
 - cow age = any for parity ≥5
- retention of herds for which the number of parity was ≥50 distributed over at least 5 years.

Final observations (calvings) = 807,985.

USING A GLINMIX PROCEDURE (SAS)

Y = birth_year_calf +calf_season +sire_breed +sex +parity +herd +cow (as random)

Stillbirth

(calves death within 48h from calving)

P<0.001

Belgian Blue, Limousine and Marchiana >> Inra95, Holstein, Angus

CALVING EASE

(1 = easy 2 = birth assisted by one person only 3 = cesarean section 4 = difficult part 5 = embryotomy

Gestation length (d)

P<0.001

Inra95 >> Holstein (+5d)

Parity effect on Calving easy for different breed of Sire

Sire breed

Multiparous cows showed a higher calving easy then primiparous, in avg. around -4%

OUTLINE

- 1. Italian beef market circumstances
- 2. The skyline of dairy cattle in Italy
- 3. Beef breeds used in Italian
 Holstein cows
- 4. Factors affect beef semen use
- Breed effect on Stillbirth, Calving easy and Gestation length
- 6. Conclusions

Conclusions

BoD is a **common practice in Italy** in Holstein populations and **its interest and use are growing**.

Farm profit can benefit from combining the use of sexed semen on the best heifers and cows and beef semen on cows exceeding the replacement needs.

The **sire beef breed has an impact** on the calving ease of the dam and stillbirth, and this has to be taken into account when BoD is used.

Anafibj developed a tool for the dairy farmers (ICAR Session 1a – Ferrari et al., 23 May 2024 - 8:54 a.m.)

Thank you for your attention

Martino Cassandro

martinocassandro@anafi.it

www.anafibj.it

your **COW**


```
class byear calf calf season sire brd sex1 parity id herd;
model sb (event='0')= byear calf calf season sire brd sex1 parity id herd/dist=binary link=logit;
random intercept / subject=id cow;
lsmeans byear calf calf season sire brd sex1 parity / ilink lines adjust=tukey;
 run;
proc glimmix data = FINa1;
 class byear calf calf season sire brd sex1 parity id herd;
model ce3 = byear calf calf season sire brd sex1 parity id herd;
 random intercept / subject=id cow;
 lsmeans byear calf calf season sire brd sex1 parity / ilink lines adjust=tukey;
 run;
proc glimmix data=FINa1;
 class byear calf calf season sire brd sex1 parity id herd;
 model gl = byear calf calf season sire brd sex1 parity id herd/ dist=normal link=identity solution
 /*link=logit solution*/;
 random intercept / subject=id cow;
 lsmeans byear calf calf season sire brd sex1 parity/ilink adjust=tukey lines pdiff;
 run;
```


Effect of Parity, Sex, Season and Year on CALVING EASE

Tukey-Kramer Grouping for parity Least **Squares Means** (Alpha=0.05) LS-means with the same letter are not significantly different. Estimate parity 1.3359 1.2869 1.2862 В 1.2815 C 1.2813 С

Tukey-Kramer Grouping for sex1 Least Squares Means (Alpha=0.05)

LS-means with the same letter are not significantly different.

sex1 Estimate
male 1.3255 A
female 1.2633 B

Tukey-Kramer Grouping for calf season Least **Squares Means (Alpha=0.05)** LS-means with the same letter are not significantly different. calf_season Estimate winter 1.3007 Α 1.2945 В 1.2929 C В spring 1.2895 C summer

Effect of Sex on Gestation length, Calving ease, Stillbirth

Gestation length

Tukey-Kramer Grouping for sex1 Least Squares Means (Alpha=0.05)

LS-means with the same letter are not significantly different.

sex1	Estimate	
male	282.26	Α
fema	281.42	В

Calving ease

Tukey-Kramer Grouping for sex1 Least Squares Means (Alpha=0.05)

LS-means with the same letter are not significantly different.

sex1	Estimate	
male	1.3255	Α
female	1.2633	В

Stillbirth

Tukey-Kramer Grouping for sex1 Least Squares Means (Alpha=0.05)

LS-means with the same letter are not significantly different.

sex1	Estimate	
male	-2.8617	Α
female	-3.4821	В

Effect of Parity on Gestation length, Calving ease, Stillbirth

Gestation length

Tukey-Kramer Grouping for parity Least **Squares Means (Alpha=0.05)** LS-means with the same letter are not significantly different. parity **Estimate** 282.49 Α 282.35 282.13 281.68 Ε 280.57

Calving ease

Tukey-Kramer Grouping for parity Least Squares Means (Alpha=0,05)				
	-means with t			
	same letter are ot significant			
different,				
parity	Estimate			
1	1,3359	Α		
5	1,2869	В		
4 1,2862 B				
3 1,2815 C				
2	1,2813	С		

Stillbirth

Tukey-Kramer Grouping				
f	or parity Leas	t		
Square	s Means (Alph	a=0.05)		
LS	-means with t	he		
•	same letter are			
not significantly				
	different.			
parity	Estimate			
1	- 2.8790	Α		
5 -3.1888 B				
4 -3.2528 C				
3	-3.2665	С		
2	-3.2724	С		