Breeding for more sustainable dairy cows

"Dairy Girls"

Francisco Peñagaricano WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

Sustainability

meeting the needs of the present without compromising the ability of future generations to meet their own needs

Sustainable dairy farming

Sustainable dairy farming

What's the importance of feed efficiency?

□ feed represents more than 50% of the total production costs

□ benefits of improving feed efficiency:

increase farm profitability
reduce the environmental impact of dairy farming

How do we measure feed efficiency?

Residual feed intake (RFI) = Observed intake – Predicted intake

Predicted Intake (based on body weight and production)

Individual feed intake recording

Insentec Gates

Calan Gates

Tie Stalls

Residual feed intake

Residual feed intake (RFI) = Observed intake – Predicted intake

DMI dry matter intake (based on feed intake)

MilkE milk energy (based on milk production and composition)

mBW metabolic body weight (based on body weight records)

ΔBW change in body weight (based on body weight records)

 $DMI = DIM + Lact + \beta_1 MilkE + \beta_2 mBW + \beta_3 \Delta BW + cohort + week + e$

 $e = DMI - \widehat{DMI} = residual feed intake$

Most/least efficient cows

Milk Yield (kg)

Trait definition: Feed Saved

Feed Saved combines Residual Feed Intake + Body Weight Composite

Change in reliabilities

Reliabilities are slowly but steadily improving

The million-dollar question

Why some cows are more efficient than others?

(some cows need less feed than others of similar body weight and milk production)

some processes that contribute to feed efficiency:

- feeding behavior, feeding patterns
- rumination, physical activity, and lying behavior
- rumen microbiome composition
- thermoregulation
- metabolism, mitochondrial function
- diet digestibility

Behavioral traits

Genetic Correlations	Rumination time (min/d)	Lying time (min/d)	Activity (steps/d)
Dry matter intake (kg/day)	0.47 ± 0.17	-0.07 ± 0.10	0.18 ± 0.20
Milk energy (Mcal/day)	0.42 ± 0.21	0.06 ± 0.16	0.03 ± 0.19
BW change (kg/week)	-0.27 ± 0.73	-0.03 ± 0.43	0.04 ± 0.17
Metabolic BW (kg ^{0.75})	0.12 ± 0.13	0.14 ± 0.08	-0.02 ± 0.12
Residual feed intake (kg/day)	0.40 ± 0.19	-0.27 ± 0.11	0.31 ± 0.22

Microbiome and feed efficiency

Microbiome

Microbiome and feed efficiency

Microbiome and feed efficiency

Rumen microbiome mediates part of the host genetic effects

Parameters

Feed efficiency: current efforts

- phenotyping, phenotyping, phenotyping!
- same question: why some cows are more efficient than others?
- whole-genome scans using sequence data
- prediction using (sensors + metabolites + spectra + genome)
- quantify genotype-by-diet interaction
- novel efficiency trait: residual heat production

Methane emissions

reducing enteric CH₄ would benefit

the environment and improve efficiency

Mitigation strategies

Phenotyping CH4

(gold standard)

Halter Halter Rumen bolus Canister Capillary tube Filter Sulphur Hexafluoride (SF6)

tracer technique

GreenFeed system

Laser detector

Phenotyping CH4

GreenFeed system: many records at different times of the day for multiple days

greenfeedr R-package

GreenFeed (C-Lock Inc.)

Trait definition

Alternative methane emisión traits

- **methane production** (grams CH₄ per day)
- **methane yield** (grams CH₄ per kg of dry matter intake)
- **methane intensity** (grams CH₄ per kg of energy-corrected milk)
- residual methane

residual methane intensity (CH₄ regressed on milkE and mBW)

 $CH_4 = Xb + \beta_1 milkE + \beta_2 mBW + e_{RMI}$

residual methane yield (CH₄ regressed on DMI)

 $CH_4 = Xb + \beta_1 DMI + \boldsymbol{e_{RMY}}$

Variability in CH4 production

lactating Holstein cows

Residual CH4 production

CH4 production regressed on (MilkE + mBW) or (DMI)

Genetic parameters

Preliminary results: 2400 Holstein cows, 10 farms

Genetic parameters

Preliminary results: 2400 Holstein cows, 10 farms

Genetic correlations	MEP	RMI	RMY	RFI
MEP	0.28 ± 0.05			
RMI		0.18 ± 0.05	0.97 ± 0.05	
RMY			0.17 ± 0.06	
RFI				0.17 ± 0.05

Genetic parameters

Preliminary results: 2400 Holstein cows, 10 farms

Genetic correlations	MEP	RMI	RMY	RFI
MEP	0.28 ± 0.05	0.85 ± 0.05	0.78 ± 0.07	0.54 ± 0.17
RMI		0.18 ± 0.05	0.97 ± 0.05	
RMY			0.17 ± 0.06	
RFI				0.17 ± 0.05

Methane emissions: current efforts

Phenotyping CH4: new horizons

CH4 production

Preliminary results: 59 Holstein bulls, 5-6 months old, 3 weeks of records

Residual CH4 production

Preliminary results: 59 Holstein bulls, 5-6 months old, 3 weeks of records

what's the genetic correlation between CH4 emissions in young bulls vs. CH4 emissions in lactating cows?

Advancing despite adversity

resilience as the capacity to maintain performance or bounce back to normal functioning after a disturbance

DMI consistency

Consistency of dry matter intake as an indicator of resilience

- DMI consistency is a heritable trait (0.11-0.14)
- DMI consistency and milk consistency are correlated (0.51-0.62)
- DMI consistency and RFI are correlated (0.26-0.31)
- DMI consistency is favorable correlated with fertility

Milk consistency

Consistency of milk production as an indicator of resilience

- Milk consistency is a heritable trait (0.21-0.23)
- Milk consistency is highly correlated across lactations (0.95)
- Milk consistency and milk production are correlated (0.57)
- Milk consistency is favorable correlated with health and longevity

Resilience

Data-driven detection of perturbations using daily milk records

Milking Date

Resilience

Differences in cows' response to the same perturbation

6 most resilient cows

Milking Date

Guinan et al. (2025) Journal of Dairy Science (under review)

Index: best selection tool!

Net Merit Index (\$NM)

\$NM: correlated responses

Martínez Boggio et al. (2025) in progress

Take home messages

growing public & consumer scrutiny over dairy farming

animal welfare, environmental impact, pharmacological interventions

- genetic selection is a critical tool to improve dairy sustainability
- genetic selection is a very powerful tool
- best selection tool: economic selection index
- focus of selection has evolved: from only production to fitness traits and efficiency
- genomics facilitates the selection for novel, sustainable traits

feed efficiency, CH₄ emissions, resilience, estrus expression, thermoregulation, ...

Ligia Cavani

Barbara Nascimento

Guillermo Martinez Boggio

Bruno D'Ambrosio

Derick Cantarelli Rosler

Sophia Green

Agustín Chasco

Negin Sheybani

Fiona Guinan

Victoria Wu

Federica Marín

Sophia Kendall

Na'imatu Sani

Collaborators

Kent A Weigel Heather M White Hilario C Mantovani Alice Peres Assumpcao Barbara Dittrich

Michael J VandeHaar Robert J Tempelman Efstathios Sarmikasoglou Vrinda Ambike

James E Koltes Ranga Appuhamy Leonora James

José EP Santos Kwang C Jeong

Ransom L Baldwin Paul M VanRaden Asha Miles Elizabeth A French Kenneth F Kalscheur

Kristen Parker Gaddis Ashley Ling

Acknowledgments

United States Department of Agriculture National Institute of Food and Agriculture

Thanks for your attention!

Dr. Francisco Peñagaricano

fpenagarican@wisc.edu

http://fpenagaricano-lab.org