

Implementation of a routine genetic evaluation of milk coagulation properties in Italian Holstein breed

Galluzzo F^{1,2}, Visentin G², de Rezende MPG¹, van Kaam JBCHM¹, Finocchiaro R¹, Marusi M¹, Cassandro M^{1,3} ¹ANAFIBJ, ²University of Bologna, ³University of Padova

your **COW**

our FUTURE

The importance of cheesemaking in Italy

- 56 geographical indications and traditional specialties
- 2021 production value: €4.7B (+12.8% annual basis)
- 2021 export value: €2.4B (+15.4% annual basis)

Mozzarella di Bufa- Gorgonzola DOI

377

459

1.607

Parmigiano

1.460

Grana

302

Pecorino

Romano DOI

Aims

 Study genetic aspects of milk coagulation properties (MCP) in the Italian Holstein breed

• Develop and implement a routine genetic evaluation of MCP in the Italian Holstein breed in order to identify the animals with the highest genetic potential for producing the most suitable milk for cheesemaking

• Add females to training population for the studied traits

What are MCP?

MCP traits have been already described and analyzed in several previous studies (Annibaldi, et al. 1977; Aleandri et al., 1989; Ikonen, 2000; Comin et al., 2005; Cassandro et al, 2008; De Marchi et al., 2009; Pretto et al., 2013; Penasa et al., 2015)

Data & data editing (1)

6.7M test-day (TD) records from 2017 onwards (AIA, «LEO project», 2023) — Milkoscan MIR spectra.

- Kept only records from regions that provide a consistent data flow (10/20)
- Max parity: 5
- DIM range: 5-405
- Removed obvious errors
- Min contemporaries (herd-year-season of recording): 20

Observations after edits: 4M

vour **COW**

Data & data editing (2): isolation forest (Pedregosa et al, 2011)

Reference phenotypic correlations:

- RCT A30: -0.73
- RCT K20: 0.80
- A30 K20: -0.79

(Visentin et al, 2015, JDS)

Correlations computed within herd-testday

in order to detect anomalies in lab measurements

your COW

our **FUTURE**

Descriptive statistics

N = 4,001,769	CAS	RCT	A3o	K20
Mean	2.72	25.40	20.73	7.29
SD	0.33	6.56	8.93	2.00
CV	12.13	25.83	43.08	27.44
MIN	1.06	5.00	5.00	1.00
MAX	6.21	60.00	60.00	20.00

- **RCT**: rennet coagulation time [minutes] optimal range: 11-18
- **K20**: curd firming time [minutes] optimal range: 5-9
- A30: curd firmness [millimeters] optimal range: 40-50

22% of the samples didn't coagulate before 30min 1% of them had an RCT > 45min

Statistical model: MT repeatability linear animal model

 $CAS_{ijklmnopq} = hys_i + S_j * Yk + DIM_l * PARCm * Y_k + AGEC_PAR_n * Y_k + a_o + pe_p + e_{ijklmnopq}$

 $MCP_{ijklmnopqr} = hys_i + S_j * Y_k + bSCS_l + DIM_m * PARCn * Y_k + AGEC_PAR_o * Y_k + a_p + pe_q + e_{ijklmnopqr}$

- MCP: 3 traits (RCT, A30, K20) with the same model
- DIM: 10 classes of 30 days
- PARC (3 classes): 1, 2, 3+
- AGEC_PAR (9 classes): 1 (<24mon), 1 (24-27mon), 1 (>27mon), 2 (<36mon), 2 (36-40mon), 2 (>40mon), 3, 4, 5
- hys & YS are relative to the recording

Variance components

Software: THRGIBBS1F90 (*Misztal et al, 2014*) Obs: 64,720 (150 herds) Convergence: R package BOA (*Smith, 2007*)

Diagonal: PM (PSD) Above diagonal: genetic correlations

CAS	RCT	Αзο	K20
0.33 (0.01)	-0.04	0.51	-0.67
	0.11 (0.01)	-0.87	0.77
		0.16 (0.01)	-0.98
			0.15 (0.01)

Genomic validation

Multi-step genomic evaluation (EDPs as pseudo-phenotypes)

MiX99 (*MiX99 Development Team*, 2022) + GS3 (*Legarra et al*, 2011)

Full run and reduced run (YYYY-3)

Trait	Training	N_training	b	r²
CAS	Bulls	3,276	1.205	0.452
CAS	Bulls+Cows	43,754	0.898	0.790
RCT	Bulls	3,276	1.359	0.421
RCT	Bulls+Cows	43,754	0.925	0.737
A30	Bulls	3,276	1.319	0.478
A30	Bulls+Cows	43,754	0.911	0.767
K20	Bulls	3,276	1.246	0.459
K20	Bulls+Cows	43,754	0.895	0.763

 $EDP_{full} = a + bDGV_{red} + e$

Average reliability increase with females:

60%

(+40,478 individuals in training population)

Genetic trend (bulls by birthyear)

your **COW**

OUT FUTURE

Approximate genetic correlations

Take home massage(s)

- Selection for MCP is feasible
- No negative effects on other traits highlighted by approximate genetic correlations, except milk yield
- Indirect selection for protein kg and % was effective
- The developed model is stable enough and suitable for routine genetic evaluation
- Adding females to training population is beneficial for MCP

These traits will be available in Italy from April `24 run (after CTC approval) with the perspective of being included in the national breeding goal for Parmigiano-Reggiano producers (ICS-PR)

Milk Coagulation Properties: scheme (Cassandr

(Cassandro et al, ICAR 2012)

