

Genomic bulls in The Netherlands and their impact on the population

Gerben de Jong, Marianne Stoop AEU

The start

Proofs computed (3K SNPs) by CRV for breeding program Proofs computed based on 50K 2007 2008 Introduction six packs genomic bulls in market Exchange genotypes Eurogenomics 2010 First national proofs Genetic Evaluation Sires (GES) Blending on Paternal Pedigree Index - Only CRV-bulls Genomic proofs added Al Kampen bulls **2011 GMACE** proofs published 2014 Genomic proofs used as pseudorecords in genetic evaluation

Interbull Workshop Verden 2014

Impact on population - Content

- Generation interval
- Genetic trends after introduction genomics
 - Bulls
 - Cows
- How well do genomic EBVs predict daughter EBVs
- Publication policy

Generation interval

Genetic trend B&W bulls

Genetic trend B&W bulls

Genetic trend B&W bulls

Trends in cow population

(roling 3 year average)

Genetic trend B&W cows and bulls

Effect of 'genomics'

Bulls:

- Increased trend in TMI NVI
- Increased trend in production, longevity and health

Cow population:

- Change in genetic trends due to change in TMI/breeding goal
- No yet change in genetic trend due to genomics
 - But will follow the bulls !!!

How well does genomics work?

- More than 50% of CRV-inseminations in Holstein with genomic bulls
- Important that breeding values keep their level genomic proof -> daughter proof
- Validation
 - Interbull tests
 - Proof on farms:
 - compare published genomic proofs with daughter proofs

NVI for 3 groups of bull

(from press list)

Comparing 3 groups of bull

Top 200 in press list	NVI
National (NLD+FLA) daughter proven	208
Interbull daughter proven	243
Genomic bulls	306

-> genomic bulls are 60-100 points (> 1 gen. stdev) higher than daughter proven bull

= about 4 years of selection (without usage of genomic)

Comparison daughter EBV minus genomic EBV

(n = 821)

		unit	% gen.stdev.
rel NVI	26		
NVI	-9	pnt	-12%
milk	-36	kg	-6%
fat	-0,6	kg	-2%
protein	-0,9	kg	-6%
herdlife	-40	day	-15%
overall conformation	-0,5	pnt	-12%
frame	-0,4	pnt	-9%
udder conf	-0,1	pnt	-1%
F&L	-0,4	pnt	-9%
SCC	-0,3	pnt	-6%
Udder Health index	-0,2	pnt	-5%
Fertility index	0,1	pnt	3%

Genomic vs Daughter EBV

Herdlife

Udder Health

Fertility index

Feet & Legs

Changes EBV bulls genomics -> daughter EBV

	Class NVI based on genomics					
	low				high	
class NVI based on						
dauEBV	1	2	3	4	5	
1-20% 1	98	43	15	6	2	164
21-40% 2	42	56	40	23	8	169
41-60% 3	16	36	46	40	24	162
60-80% 4	7	21	43	57	35	163
81-100% 5	1	10	22	35	95	163
	164	166	166	161	164	821

Bulls ranking low (1) to high (5) in 5 classes

Of 164 bulls in lowest class based on genomics: 98 in the lowest class based on daughters and 1 in the highest class

Of 164 bulls in highest class based on genomics: 95 in the highest class based on daughters and 2 in the lowest class

Publication policy genomic EBVs

NLD GEBV published:

- reliability at least 30%

GMACE GEBV published:

- Bull has no EBV based on daughters having records
- Reliability at least 30%
- Reliability GMACE > 10% higher than NLD gEBV
 - -> as soon as foreign genomic proof is available through GMACE, it is published (following Interbull)
 - -> also with NVI (rank index) !!!
 - -> Interbull proofs available in publication list (gesfokwaarden.eu)
 - -> in database Stierzoeken/Siresearch (global.crv4all.com)

Final remarks

Effect on population

- large effect on bull population
 - -> change in breeding programs
 - -> shorter generation intervals
 - -> larger genetic trend
- yet not much effect on cow population
 - -> BUT coming years a large change

Genomic EBVs -> keep the same level

Thank you for your attention

