

Institute of Agricultural and Nutritional Sciences Martin-Luther-University Halle-Wittenberg Group Animal Breeding

2015 Interbull Technical Workshop and Industry Meeting February 24/25, 2015 Walsrode and Verden/Aller, Germany

German Projects for Genomic Based Breeding Programs in Holstein

H. H. Swalve Martin-Luther University Halle-Wittenberg Institute of Agricultural and Nutritional Sciences

New phenotypes

- Precision on the genetic side also demands precision on the phenotype side
- New possibilities due to new technologies
 - Markers in the milk
 - Mid-Infrared spectral data
 - Measuring methane
 - o etc.
- "Old" traits revisited
 - Early cell counts
 - Early culling
 - Fat: protein ratio at fixed points in the course of the lactation
 - New definitions for calving ease and stillbirth
- → Develop new traits, especially for improved health
- → Increase precision in traditional traits
- \rightarrow Give considerations to specific environments (\rightarrow G x E)

In the era of genomics phenotype is the king

II, II,

(Coffey, 2010, WCGALP Leipzig)

Test herds (contract herds / cooperator herds)

- Traditional: test inseminations for young bulls
- Today: Collect more and precise data, genotype cows, establish genomic selection for traits that can not be recorded in the entire population

Why test herds for health traits?
Different levels of data collection

Ordinary collection of cases (if a cow is treated - record this)

Assess health status of entire contemporary group (herd) (classify diseased and healthy cows at one point in time)

Record markers that are informative for a pre-disposition (without the animals being diseased)

Züchtungskunde, **80**, (1) S. 5 – 10, 2007, ISSN 0044-5401 © Eugen Ulmer KG, Stuttgart

Züchterische Möglichkeiten zur Verbesserung der Tiergesundheit

H.H. SWALVE1

Test herds in Mecklenburg-Vorpommern und Brandenburg

Living animals

	RBB		RMV (RA)				
Test herds	62		30				
Project started	Oct. 2009		Oct. 2005				
Ø#of cows/herd (Sep 2013)	587 cows (58 TH)		869 cows (29 TH)				
N calvings	37.418		27.321		Already collected:		
Year 2012/13					RBB	RMV (RA)	
		Diagnoses			1.157.336	1.105.039	
		First diagnoses			558.609	574.968	
		Claw trimming			225.856	6.130	
Plus:		Herds w claw trimming established			51	3	
Weights of calve Weights of heif	es ers						

The Kuh-L project (pronounce: *cool*) Calibration sample made up from cows: Traits

- All standard traits
 - Dairy production
 - Somatic cell count
 - Conformation / Type
 - Reproduction
 - Calving ease and stillbirth (done the traditional way)
 - Longevity
- Traits recorded without additional costs / already implemented
 - Calving ease and stillbirth with supervised recording and weight of calf (living calf / dead calf)
 - All diseases /treatments / disorders according to health key codes
- Based on standard milk recording but neglected so far
 - Fat : protein ratio in early lactation
 - Energy balance from indirect calculations
 - Spectral data / fatty acids in milk
- Specific, new recordings
 - Claw disorders recorded at time of hoof trimming

The Kuh-L project: Partners

Praxis	Funktion
FBF e.V. (Holstein organisations)	Coordinator
Rinder Allianz (test herds)	Service in all aspects of phenotyping; Samples for genotyping
RBB (test herds)	Service in all aspects of phenotyping; Samples for genotyping
Science and vit	Expertise
Group Swalve, Halle	Pilot projects, breeding program, Genomic selection, estimation of BV
Group König, Kassel	Pilot projects, breeding program, Genomic selection, estimation of BV
vit	Estimation of BV, genomic selection
Projekttröger Jülich Forschungszentrum Jülich	Bundesministerium für Bildung und Forschung Förderverein Biotechnologieforsch

Imputing for animals without sample for genotyping

- → Algorithms have been developed by vit and group König/Swalve
- → it will be feasible to genotype 20.000 cows and also use 20.000 dams

Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture

Pimentel et al. Genetics Sek

Eduardo CG Pimentel^{1†}, Monika Wensch-Dorendorf^{2†}, Sven König^{1*} and Hermann H Swalve²

Pimentel et al. Genetics Selection Evolution 2013, 45:12 http://www.gsejournal.org/content/45/1/12

Kuh-L project (pronounce: cool): As of now

- Selection of herds from RA and RBB test herds:
 22 RA herds plus 33 RBB herds
- Sampling for genotyping of heifers and young cows such they will complete a first lactation with two years from now
- Preparations for claw trimming data: seminars, etc.
- Preparations for data flow of spectral data
- Samples taken: around 10,000 as of early 2015, genotypes processed for around 7000

The SNP era: Genomic selection and GWAS

- ✤ Size of reference sample
- ✤ Accuracy of phenotypic information \rightarrow EBV

- Other aspects
 - density of markers
 - extent of LD
 - number of QTL

today: not a problem → sequence data Not a problem in most dairy breeds!? Not too many big ones, at least not in standard traits

So, do we need any knowledge on functional mutations?

Individual functional mutations - why look for them?

- \rightarrow Gain more knowledge on the genetic architecture of a trait
 - this will also help to understand genetic relationships between traits
- Problem: The identification of individual functional mutations is difficult for a number of reasons
 - → "missing heritability" phenomenon

"Missing" h² for diseases (other traits): reasons

- ✤ Sample size not sufficient
- * Density of SNP not sufficient \rightarrow need sequence data
- CNV important?
- Epistasis?

✤ Other reasons?

Functional mutations: Is it a G × E problem? Dirty field work ... → Diseases of the bovine hoof

Interdigital Hyperplasia (Tyloma / Limax)

Dermatitis interdigitalis

Dermatitis Digitalis (BDD, "Mortellaro")

White line disease

Laminitis

Sole ulcer

Functional mutations: Is it a G x E problem? Sole hemorrhage / laminitis (Swalve et al., 2014)

Laminitis

- is a non-infectious disease caused by multiple factors
- one factor is dietary carbohydrate overload leading to sub-acute ruminal acidosis
- manifests as sole hemorrhage
- we recorded any case, mild, or more severe to form one binary trait for analysis

	Herd-Visit	# cows	Proportion of	Prevalence	
Eunctional mutations		# 00113	entire data (%)	in cohort	
Taita Gy Enroblem	A_1	75	3,82	0,39	
Esta homonohooo /	A_2	47	2,40	0,66	
Sole hemorrhage /	B_1	92	4,69	0,30	
Laminitis (cont.)	B_2	80	4,08	0,50	
(Swalve et al., 2014)	B_3	79	4,03	0,92	
	B_4	69	3,52	0,71	
	C_1	87	4,43	0,55	
N = 1962 cows	C_2	73	3,72	0,53	
 7 large herds 	C_3	70	3,57	0,66	
 Slatted floor only 	C_4	165	8,41	0,68	
	D_1	114	5,81	0,49	
 Some cohorts 	D_2	80	4,08	0,25	
with extreme prevalence	D_3	93	4,74	0,54	
	D_4	84	4,28	0,73	
·	E_1	154	7,85	0,55	
 1174 cowe picked 	E_2	31	1,58	0,61	
for initial analysis	F_1	40	2,04	0,43	
Jor minul analysis	F_2	82	4,18	0,35	
using 384-chip	F_3	70	3,57	0,43	
- rorget about	F_4	65	3,31	0,40	
extreme cohorts!	F_5	82	4,18	0,70	
2nd analysis:	G_1	75	3,82	0,87	
full data	G_2	80	4,08	0,59	
	G_3	75	3,82	0,89	

Functional mutations: Is it a G x E problem? Sole hemorrhage / laminitis (Swalve et al., 2014)

Results:

- (intronic) SNP within IQGAP1 = Ras GTPase-activating-like protein (BTA 21) is significant
- In humans and mice this gene is known to regulate neo-vascularization, preferably in limbs (knock-out mice show impaired vascularization)

Probability / Genotype	Probability for status = 1			
	Full data	Initial data		
P(y = 1 AA)	.506	.369		
P(y = 1 AG)	.578	.519		
P(y = 1 GG)	.615	.559		
Difference P(GG) – P(AA)	10.9**	19.0***		

Functional mutations: Is it a G x E problem? Sole hemorrhage / laminitis (Swalve et al., 2014)

- Most likely a G x E problem, since
 - on soft floors, like straw bedding, hardly any case of sole hemorrhage can be found
 - on slatted floors, prevalence of laminitis / sole hemorrhage is highly dependend on "correctness" of feeding
 no overload in highly digestible carbohydrates - no disease!
 - → Even for a non-infectious disease, the identification of influential genes is highly dependent on the environment!

Functional mutations: Is it a G x E problem? → Interdigital hyperplasia (Sammler et al., Ms. in prep.)

IH:
→ Highly
heritable!

- $\boldsymbol{\boldsymbol{\ast}}$ Same data set as in sole hemorrhage study
- ✤ In total 107 cases
- Two herds with high prevalence
- Little difference in use of bulls among all 7 herds
- Drastic differences between cohorts!

Obs	Herd-visit	ncow	ih0	ih1	ihboth
1	Ahr_1	75	74	1	1
2	Ahr_2	47	40	7	4
3	Bur_1	92	90	2	1
4	Bur_2	80	74	6	5
5	Bur_3	79	69	10	8
6	Bur_4	69	66	3	2
7	Ded_1	87	85	2	0
8	Ded_2	73	73	0	0
9	Ded_3	70	68	2	2
10	Ded_4	165	160	5	5
11	GM_1	114	114	0	0
12	GM_2	80	79	1	1
13	GM_3	93	93	0	0
14	GM_4	84	83	1	1
15	Goe_1	154	153	1	1
16	Goe_2	31	31	0	0
17	Pl_1	40	33	7	4
18	PI_2	82	66	16	11
19	Pl_3	70	63	7	2
20	Pl_4	65	59	6	3
21	Pl_5	82	69	13	9
22	Wol_1	75	64	11	7
23	Wol_2	80	79	1	1
24	Wol 3	75	70	5	3

Distribution of EBV for tyloma of sons of important sires-of-sons across quartiles of EBV (8 sires-of-sons with > 20 sons each)

		В	Ρ	L1	Α	S	R	L2	J
		nson=30	nson=27	nson=19	nson=20	nson=24	nson=27	nson=23	nson=23
		ndau=7	ndau=12	ndau=5	ndau=28	ndau=36	ndau=138	ndau=195	ndau=32
		ngdau=803	ngdau=658	ngdau=849	ngdau=500	ngdau=470	ngdau=632	ngdau=442	ngdau=657
		nob=2988	nob=2727	nob=3154	nob=1746	nob=1538	nob=2177	nob=1403	nob=1474
Best	N	6	26	*15	6	16	4	2	1
quarter	P%	2.0	0.9	1.2	1.5	1.5	1.9	1.3	2.2
Medium	N	15	1	3	11	7	17	13	12
half	P%	5.4	2.9	5.7	5.6	4.7	5.2	6.8	7.9
Worst	N	9	0	1	3	1	6	8	10
quarter	P%	23.0	0	15.3	17.2	15.9	18.4	15.8	16.8

Functional mutations: Is it a G × E problem? Interdigital hyperplasiaResults:all cowsHerd PI

BDD / Mortellaro's Disease

- = Dermatitis digitalis
- = Bovine digital dermatitis (BDD)
- = Hairy heel warts

- Increasing problem in Europe (S -> N)
- Proportion of animals affected varies considerably between herds
- Most often spreading at a rapid speed
- infectious

BDD - a multi-factorial disease

... bacterial infection

Treponema (Treponema spp.)

- scre-shaped, actively moving

Treponema pallidum

- reservoirs in deeper tissue layers

inpro corporation 2014

Genetic background of BDD

Knowledge so far:

- Estimates of heritability tend to be small (h²: 0.03 – 0.14)

-> but are mostly based on a one-time assessment or an assesment in long intervals

-> taken as binary

=>healthy / diseased (0/1)

 -> Development of stages of BDD Holzhauer et al. 2008
 -> Makroscopic classification of BDD Döpfer et al. 1997 Berry et al. 2012

Classification of individual stages of BDD

- M0=0 healthy
- M1=1 early, small
- M2=2 acute, painful, active
- M3=3 healing, dry
- M4=4 chronic
- M4.1=5 chronic, but active

M1 Early stage

M2 Acute and infectious stage

M3 Healing stage

M4

Chronic stage

M4.1 Chronic stage, repeated cases, infectious

Bildquelle: Zinpro corporation 2014

Lessons learnt from looking at individual genes

- Sample size is important
- ✤ Density of SNP is an issue → may need sequence data
- CNV important?
- Epistasis?
- Precision of phenotypes
- ✤ G × E may mask associations in many cases
- \rightarrow In Kuh-L, we will attempt to
 - Use genotypes and phenotypes for GS (Two-step - one-step)
 - Identify functional mutations, especially for health traits
 - Focus on the precision of phenotypes

Next: Ressource efficiency

Residual feed intake

* is an animal breeder's terminology (Arendonk et al., 1991)

- ✤ is an <u>estimated</u> figure
- varies by up to 15 % between cows (all corrections done, identical feed) Connor et al. (2012)

Residual Feed Intake (RFI): Dashed line = feed intake as calculated, Colored points = individual cows

Milk

Positive RFI \rightarrow cow is not efficient Negative RFI \rightarrow cow is efficient Possibilities for breeding

- RFI exhibits heritability of 40 %
- * RFI is correlated with feed intake
- Heritabilities and correlations vary in the course of lactations
- * Optimale definition of RFI in the course of the lactation yet unclear

Predicted methane emission (PME) and RFI (de Haas et al., 2011)

- South parameters are heritable (0.35 to 0.40)
- Selection would be possible
- Genetic correlations between PME and RFI vary in the course of the lactation:

0-42	1-5	6-10	11-15	16-20	21-25	26-30
0.32	0.84	0.50	0.18	0.21	0.34	0.43

* Need to collect data on methane emissions to verify this

Measuring of methane emissions in a mobile way on farms

Measuring methane (Halle team; Diana Sorg et al.; Feb 2015)

Comparing methane emissions Respiration chamber - Laser-Methane-Detector

Chagunda und Yan (2011)

Spectral data: Relationship with methane emissions

Dehareng et al. (2011)

Spectral data in routine laboratories of milk recording agencies:

Here: Determination of fatty acids (Gengler, 2009)

Already a few studies have been published that established relationships between spectral data and:
Feed intake - feed efficiency
Fatty acids composition
Methane emissions of individual cows
The microbiom of individual cows
Reproductive traits

Possibilities for breeding to improve resource efficiency

Genetic improvement of health, reproduction, and longevity

- not of utmost importance for resource efficiency, but also of importance for animal welfare
- Methods: <u>Genomic Selection</u>, phenotyping in test herds
 KUH-L project
- Genetic improvement of feed efficiency / Reducing green house gas
 - many scientific questions yet to be answered
 - Large team effort of nutritionists and geneticists
 - → New, upcoming project
 - →Recording of feed intake, respiration chambers, mobile measurements of methane, relationships with health → test herds
 - Application through <u>Genomic Selection</u>

Institute of Agricultural and Nutritional Sciences Martin-Luther-University Halle-Wittenberg Group Animal Breeding

Conclusions

- The breeding organizations of German Holsteins have applied Genomic Selection with great success
- Now it is the era of precise phenotyping
- Highly innovative projects are underway that will help to continue to breed the robust and functional dairy cow

