Sustainable breeding for feed-efficient cows with lower methane emissions

Heringstad, B. ^{1,2}*, and K. A. Bakke² ¹ Norwegian University of Life Sciences, Ås, Norway. ² Geno Breeding and A.I. Association, Norway.

ADSA 2025 Annual Meeting, June 22-25, Louisville, Kentucky

Breeding and Genetics Symposium: Joint ADSA-Interbull Session – "Creating Carbon-Friendly Cows and Leveraging Omics to Improve the Sustainability of Dairy Production" Bjørg Heringstad

and Genetics Norwegian University of Life Sciences Faculty of Biosciences e-

Professor Animal Breeding

mail: bjorg.heringstad@nm

Breeding for better lives

Sustainable breeding for feed-efficient cows with lower methane emissions

Sustainable breeding

- Broad breeding goal
- Balanced weights
- Accuracy of breeding values
- Efficient breeding program
- Control inbreeding

Norwegian Red

- Emphasis on health and fertility since 1970's
- How to breed a feed efficient climate friendly cow?

Dairy cows in Norway

- ≈ 200 000 dairy cows
- > 90 % Norwegian Red breed
- > 50 % of cows in herds with automatic milking system (AMS)
 - herd size
 - labor costs

Photo: Geno

Breeding feed efficient cows with lower methane emission

AIM

include selection for improved **feed efficiency** and reduced **methane emissions** in the sustainable breeding goal for Norwegian Red

- Phenotyping new traits
- Trait definitions
- Accuracy of genomic breeding values
- Genetic associations to other important traits
 - milk yield, health, fertility...
- Predictions and indicator traits

Breeding feed efficient cows with lower methane emission

- New traits challenging phenotypes
- Traits in the category difficult, costly, time and/or labor-intensive to collect
- Reliable phenotypes crucial for efficient breeding
- Need phenotype on a sufficient number of animals to build a reference population for genomic selection

Breeding feed efficient cows with lower methane emission

- New traits challenging phenotypes
- Geno established large-scale phenotyping of Norwegian Red cows
- Equipment to measure individual roughage feed intake and methane emission at 14 commercial dairy herds
 - All herds with automatic milking systems
 - All cows genotyped
 - ~ phenotyping **1.000** cows pr. year

Phenotyping methane and feed intake

Data collection from the 14 herds ~ 1.000 cows per year

- Methane emission GreenFeed
- Roughage feed intake Biocontrol feed bins
- Concentrates feed intake
- Milk yield ++ from AMS
- Body weight
- Body Condition Score camera
- Activity meters
- Other sensors

- Genotyping of all cows
- Feed samles for analyses
- Milk samples
- Relevant data from the Norwegian Dairy Herd Recording System

Phenotyping of Norwegian Red

		No of observations	No of cows
		(1 record per	with data
		cow/day)	
Methane from	gram /day	1.126.468	3030
GreenFeed	(average)		
Roughage Feed Intake	Kg/day (sum)	1.183.591	2361

Variable	Mean	Std Dev
CH4	405.2234391	106.3186983
Feed_kg	37.3796641	13.3312148
weight_kg	619.0093114	77.4366873

Methane emission

GreenFeed equipment

Record methane for individual cows

- 2-5 visits per day
- Offer small amounts of concentrates for motivation
- Time restrictions: Minimum time since last visit
- Require minimum 2 minutes with correct head position for good data (accepted record)
- From each visit an estimate of the cow's methane emission grams per day

Methane emisson per cow per day

- Methane measures from GreenFeed
- Average per cow per day

Data from 14 GreenFeed units 3030 NRF kyr > 1 mill CH₄ daily records

Genetic variation for methane emissions

Trait: Methane gram/day

(average per cow per day)

Heritability : 0.34

(standard error (s.e.) 0.04)

Breeding values range from -123 to 143

(s.e. from 22 to 34)

Breeding values (EBV) for cows with phenotype

EBV given as methane gram per day

Methane emissions young bulls

Measuring methane on young Norwegian Red bulls at Geno's test station

- \approx 150 bull calves to test station each year
- Arrive 3-4 months old
- Pens with ≈10 bulls
- GreenFeed for methane (CH₄) recording
- Measure methane last month before leaving test station (at 11-12 mo old)
- On average 40 days with methane data
- Phenotype CH₄ data on both selected AI bulls and non-selected

Methane emission young Norwegian Red bulls

Distribution of methane records (g/day)

Data from September 2020 to April 2023

- 76 094 observations (GF visits)
- 212 Norwegian Red bulls

Genetic variation for methane emissions

Trait: Methane gram/day (average per bull per day)

Heritability: 0.56 (s.e. 0.20)

Breeding values range from -37 to 60

(s.e. between 12 and 15)

Breeding values (EBV) for young bulls with phenotype

Is methane emission the same trait genetically in young bulls and lactating dairy cows?

Is methane emission genetically the same trait in young bulls and lactating dairy cows?

Data

Methane (CH₄) data from GreenFeed (GF) from

• 14 commercial dairy herds

772 000 GF visits from 1 370 cows

• Geno's test station for young bulls 112 000 GF visits from 244 young bulls

Traits

Daily CH_4 emission = average of the GF visits each day:

- gram CH₄ per cow per day
- gram CH₄ per bull per day

Connected via pedigree

2 groups from the same Norwegian Red breeding population

90 A.I. sires had offspring in both groups

Among the young bulls with CH₄ data

- 151 had half-sisters with CH₄ data
- 2 had daughters with CH_4 data Among the cows with CH_4 data
- 598 had half-brother(s) with CH₄ data
- 10 had a sire with CH₄ data

Is methane emission genetically the same trait in young bulls and lactating dairy cows?

Results

- Estimated heritability (s.e.) of daily CH₄ emissions:
 0.39 (0.04) for cows
 0.49 (0.15) for young bulls
- Estimated genetic correlation (s.e.):
 0.63 (0.22)
- ➤ Large s.e.: Interpret with caution
- Strong genetic correlation: Phenotyping young AI bulls is valuable for future genetic evaluation of CH₄

Photo: Geno

Methane-mitigating feed additives

Genetic variation in the cow's response to methane-mitigating feed additives

AIM: test the CH₄-mitigating effect of 3-NOP (Bovaer[®])

- Commercial dairy herd
- 79 Norwegian Red cows
- from June 2023 to June 2024
- CH₄ measured by GreenFeed

14,166 daily CH₄ measures were analyzed

- Trait: CH₄ gram/day (average of the cows GF visits)
- Cows in 2 groups with 3-NOP and without (control)

Distribution of daily CH₄ measures in control group (left) and the group that received 3-NOP feed additives (right)

CH₄-mitigating effect of 3-NOP

- Variation between cows?
- Genetic variation?
- Response = deviation from base-level CH₄ defined as the cow's change in CH₄ after introducing 3-NOP in the diet compared to the "base level CH₄" in periods without 3-NOP
- The base level period (no 3-NOP): 3 weeks in September and 4 weeks in January/February

CH₄-mitigating effect of 3-NOP

 Analyzed daily CH₄ with a linear animal repeatability model

> Fixed effects: 3-NOP group, parity, lactation week, test-day Random effects: animal genetic, pe, and residual

- Computed "Yield Deviations" for CH₄ (YD_CH₄)
 i.e. daily CH₄ corrected for effects of parity, lactation stage and test-day
- 3. "Base level CH₄" = average YD_CH₄ from the periods without 3-NOP
- 4. CH₄-response was calculated as YD_CH4₄ minus base level CH₄

7,926 records

Distribution of CH_4 -response, change in daily CH_4 for days with 3-NOP in diet compared to the cow's "base level"

Genetic analysis of CH₄-response

- Trait: CH₄-response (daily records)
- Linear animal repeatability model with fixed effect of testday and random genetic effect of cow
- Estimated variance components using DMU

	estimat	s.e
σ^2_{g}	852	182
σ_{e}^{2}	4933	80

Heritability: 0.15 (0.03)

EBV for cows with CH_4 -response records:

Ν	Mean	Std Dev	Minimum	Maximum
51	-1.8593409	27.3343032	-53.7388000	58.9626000

Genetic variation in the cow's response to methane-mitigating feed additives

The effect of 3-NOP varies between cows Part of the variation is genetic

Feed efficiency

Feed efficiency

- Recording roughage intake in 14 herds
- Building reference population
- Predict genomic breeding values for feed efficiency
- Include feed efficiency in TMI

Traits

- CH4: Methane gram/day
 - (average per cow per day)
- BW: Body weight, kg

 (average per cow per day)
- **dDMI**: sum daily dry matter intake (kg)

Phenotypic distributions

Heritabilities (h²) with standard error (s.e.) on the diagonal and genetic correlations below

Trait	dDMI	BW	CH4
dDMI	0.29 (0.05)		
BW	0.59 (0.11)	0.57 (0.05)	
CH4	0.65 (0.10)	0.50 (0.09)	0.39 (0.04)

dDMI: daily dry matter intake (kg)BW: Body weight (kg)CH4: Methane gram/day

`h^2calculated as:
$$\sigma_a^2$$
 / (σ_a^2 + σ_{htd}^2 + σ_{pe}^2 + σ_e^2)`

Breeding feed efficient dairy cows with lower methane emissions

Results so far:

- Good data on methane and feed intake
- Genetic variation in Norwegian Red
- Breeding feed efficient cows with lower methane emissions is feasible
- Trait definition feed efficiency?
- Trait definition methane?
- Associations between traits
- Started to analyse traits that are key ingredients of a future feed efficiency and methane traits

Sustainable breeding for feed-efficient cows with lower methane emissions

Sustainable breeding

- Broad breeding goal
- Balanced weights
- Accuracy of breeding values

We aim to **balance** feed efficiency, climate effects, production, health, and fertility in a sustainable breeding goal for Norwegian Red

The work presented here is done together with **dr. Karoline Bakke**, researcher, Geno R&D and **Eli Hveem Krogsti**, project leader of the feed efficiency project, Geno R&D Acknowledgements to all the participating herds for providing data and the Norwegian Research Fund for Agriculture and Food Industry (FFL/JA) for funding the research projects

The and With the second and the second and the second and the second and the second of the second and th