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Introduction

• Feed intake represents >50 % of total costs of dairy 
production.
– Dry matter intake (DMI in kg) is expensive to measure 

(never mind actual energy intake in Mcal!)

– Tied to both economic and environmental sustainability.

• USDA grant (Vandehaar PI) generated ~5,000 DMI 
records on ~4,000 cows from 8 US research stations for 
>42 d of intakes between 50 and 200 DIM.

• Genomic reliabilities for elite young bulls averaged 12% for RFI (Van 
Raden et al., 2018) based on use of reference population from 
USDA grant.

– Other countries (Netherlands, Australia) have published 
genetic evaluations based on feed efficiency
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Outline of talk

• Help provide a clear GENETIC distinction between 
various definitions of feed efficiency (FE) traits

– Dry matter intake

– Residual feed intake (RFI)

• Phenotypic vs genetic RFI (pRFI vs. gRFI)

– Feed Saved (FS) including genetic Feed Saved (gFS).

• Implications of FE trait choice for reliabilities of 
genetic evaluations and selection programs
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phenotypic Residual Feed Intake (pRFI)

TWO STAGE MODEL

pRFI is not an observable trait:  -> estimated residual from a  first-stage statistical model:

DMI= various environmental effects (e.g. CG) +  b1MilkE + b2MBW + b3DBW +   e

Second stage model is the quantitative genetic analysis model

pRFI= μ+ u(polygenic/genomic) + other cow-specific effects + e

potential random regression extensions for DIM-specific pRFI

Problem with pRFI:  It is phenotypically independent of MilkE and MBW….but 

it may not be genetically independent!

→Fails to recognize that genetic relationships between traits may differ 

from non-genetic relationships between traits!

ˆpRFI e
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MilkE:  Milk energy
MBW:  metabolic body weight (BW0.75)
DBW:  change in BW

RFI is a measure of metabolic efficiency



An alternative approach to deriving genetic RFI (gRFI),
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Originally introduced by Kennedy 
et al. (1993)

Multiple trait model approach 
due to Lu et al. (2015)

Genetic relationships

Residual relationships

Multiple trait (MT) 
model also adjusted for 
DBW (i.e. hybrid 
gRFI/pRFI approach)

(Kennedy et al. 1993 did not consider separate coefficients for residuals)

MT model approach assures that MilkE
and MBW are BOTH genetically and 
residually independent of gRFI!

   , ,, ,, , 0gRFI jMilkE j MBW j gRFI jcor uu coru u 

   , ,, ,, , 0gRFI jMilkE j MBW j gRFI jcor ee core e 

  2

,var
gRFIgRFI j uu 

  2

,var
gRFIgRFI j ee 

(Not true in Kennedy et al. 1993)



An application

• Feed intakes on 6,937 Holstein cows from 16 
research stations within 4 countries
– = env. effects + 0.33 MilkE + 0.09 MBW + pRFI

pRFI = corrected DMI – 0.33 MilkE – 0.09 MBW

– So….. pRFI is a linear combination (“derivative trait”) of 
DMI, MilkE and MBW 
• Once you’ve conducted a MT analysis on DMI,MilkE and MBW, 

there is NO NEED TO DO A SEPARATE ANALYSES to compute 
heritability of pRFI and genetic correlations of pRFI with these 
or other traits (Kennedy et al., 1993).
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DMI

𝑖. 𝑒. ෠𝑏1 = 0.33kg/Mcal
෠𝑏2 = 0.09 kg/ kg0.75

(kg) (Mcal) ( kg0.75)

Rearrange this expression:

(kg)



Multiple trait analyses of FE component traits 
(Lu et al., 2018; JDS)

• Variances-covariances (VCV)   

– Genetic VCV Residual VCV
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MilkE and MBW are potentially good predictors of DMI… 
….genetically and phenotypically!



Example of Ecological 
Fallacy/Simpson’s Paradox

(Bello et al., 2012; JDS)
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Within herd versus across herd 
relationships between milk yield and 
calving interval

Positive (antagonistic) 
relationships between traits 
WITHIN herds

Negative (beneficial) 
relationship between traits 
ACROSS herds

In turn, could anticipate differences in 
genetic and residual correlations 
between traits.

Use of pRFI fails to recognize this



MilkE
MBW 
DMI

Simply deriving gRFI coefficients from a MT analyses

Similarly,

• You could do the same thing with pRFI!
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gRFI vs pRFI comparisons (Lu et al., 2018)

Trait
Genetic 

variance

Residual 

variance
Heritability

pRFI 0.40 ± 0.05 2.09 ± 0.05 0.16 ± 0.02

gRFI 0.38 ± 0.05 2.09 ± 0.05 0.15 ± 0.02
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gRFIEBV

            pRFIEBV

Trait Component
Partial regression 

on MilkE (kg/Mcal)

Partial Regression on MBW 

(kg/𝑘𝑔𝟎.𝟕𝟓)

pRFI Phenotypic ෠𝑏
1

=0.33±0.06 ෠𝑏
2

=0.09±0.02

gRFI Genetic ෠𝑏
1

𝑢
=0.40±0.02 ෠𝑏2

𝑢
=0.097±0.008

Residual ෠𝑏
1

𝑒
=0.31±0.01 ෠𝑏2

𝑒
=0.089±0.005

Genetic parameters

Partial regressions of DMI on energy sink traits (MilkE & MBW)

Genetic
relationships 
are stronger 
than residual
relationships 
between DMI 
with MilkE
and MBW!



Actually, you never ever need to explicitly compute a RFI once 
you’ve done a multiple trait analyses on component traits!!!
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Same thing is true for gRFI!

Key points/reminders
ugRFI uncorrelated with uMilkE and uMBW
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Deriving residual covariance parameters for gRFI

• Key points/reminders
– egRFI uncorrelated with eMilkE and eMBW
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Feed Saved
• Currently popular feed efficiency trait (AUS,CRV)

• Pryce et al., 2015 
– Recall 

• pRFI
–

• Energy required for maintenance =  
–

• Feed saved (FS)   

• Why not consider genetic Feed Saved (ugFS)? 

– i.e. genetic rather than phenotypic regressions…just as 
with gRFI!! 14

   1 2adjDMI b MilkE Mil b MBW MBW pRFIkE    
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Easier for 
industry to 
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Combine together



Other possibilities

Residual milk energy (Coleman et al., 2010):

– Switch the trait order :  adjust MilkE for MBW & 
DMI

– i.e. use genetic regressions.

• Feed Conversion or Gross efficiency ratio
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…difficult to work with… not normally distributed 
and need to express EBVs relative to a baseline-> 
option: use a Bayesian approach (Shirali et al., 2018)

NOT DISCUSSED FURTHER:  linear measures are 
more highly related to profit (selection indexes, 
IOFC) than ratio measures!
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Relationship between alternative FE traits
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PTA reliabilities on sires for different proportions of daughters 
having DMI records (all daughters have MilkE,MBW records)
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Bottom line:  “Feed 
efficiency” PTA accuracies 
depend on trait definition  

Want meaningful genetic evaluations on metabolic 
efficiency (RFI)??…then you need DMI records!

Remember: Top US young bulls 
average 12% for reliability on RFI?



Selection index as a function of DMI

• Suppose efficiency index (EI..$/d) only involves 
MilkE, MBW, & DMI.

• Assume:

– v1 =  $0.60/Mcal (based on milk fat prices) 

– v2 = 0  (don’t factor in feed costs here!…that’s already in v3!!!)

– v3 = - $0.25/Kg (feed costs…AS IS)

• Elsie’s EBVs  
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Write same efficiency index…but now as a function of gRFI!

• From Lu et al. (2018):
– Plug this into
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EI as function 
of gRFI: Same as before!!!!
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Selection Index Weights

EI being 
function 
of which 
FE trait?

Actual (relative) 
economic 
weight on MilkE

Actual
(relative) 
economic 
weight on 
MBW

Actual
(relative) 
economic 
weight on FE 
trait

Elsie’s 
Efficiency 
Index (EI)

DMI 0.60 (79%) 0 (0%) -0.25 (21%) $+0.71

gRFI 0.50 (74%) -0.025(12%) -0.25 (14%) $+0.71

gFS 0.50 (81%) 0(0%) -0.25 (19%) $+0.71

20

Reliability of EI does not change whether EI is written as function of 

DMI, gRFI, gFS (or pRFI or pFS or residual milk energy for that matter)!!

Actual weights 
on FE trait don’t 
change!



Conclusions for genetic evaluation of 
Feed Efficiency (FE)

• DMI vs RFI vs FS…vs whatever. DOES IT MATTER??
– Actual selection index (SI) does (SHOULD) NOT change if it’s a 

function of DMI, FS or RFI…even though h2 of FE traits vary 
from each other.

– It might only matter if breeders wish to deviate from SI and 
upweight biological efficiency (RFI) or economic efficiency (FS)

• Of the 3 (DMI,RFI,FS), FS might be the most economically 
meaningful FE EBV to report, but RFI still most relevant for 
metabolic efficiency studies(e.g. GWAS -> Lu et al., 
2018)…FS is a genetically more complex trait
– Strongly advocate the use of genetic regressions for both FS 

and RFI given potential differences in genetic versus residual 
relationships between component traits.
• gRFI gFS gRMilkE
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Other issues to contend with in 
selection indexes

• Badly need genetic correlation estimates 
between DMI/RFI/FS and other traits in NM$

• RFI/FS sink coefficients may be changing 
systematically over time:
– e.g. b2 on (M)BW….↑

– implies that genetic/residual correlations are 
changing between DMI and (M)BW ?

– Substantial heterogeneity in pRFI coefficients 
(Tempelman et al., 2015) and gRFI coefficients(Lu 
et al., 2017) across herds and rations as well.
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THANK YOU! 
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