Economic Development, Jobs, Transport and Resources

Implementation of genomic selection for heat tolerance

T.T.T. Nguyen, J.E. Pryce et al

Dairy Australia Source: BOM Long-term annual precipitation (a) and mean temperature (b) over Australia

0.60 0.40

0.30 0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.30

-0.40

0.60

 \odot

CLIMATE CHANGE IN AUSTRALIA PROJECTIONS FOR AUSTRALIA'S NRM REGIONS

2.7 to 4.2 °C (high emissions) 1.2-2.1

2090

(intermediate)

O Victorian Agriculture Minister Jaclyn Symes who announced additional government support for northern dairy farmers affected by drought. Picture: Yuri Kouzmin

DAIRY

\$2.7m drought package to help northern Victoria dairy farmers

ALEX SINNOTT, The Weekly Times May 31, 2019 4:43pm

(7) 🕑 🕥

A NEW \$2.7 million drought package was opened up for northern Victoria by the State Government today.

Victorian Agriculture Minister Jackyn Symps announced the additional

DAIRY

National milk production predicted to fall to 8.2 billion litres

PETRA OATES, The Weekly Times May 29, 2019 12:00am Subscriber only

🕜 🕑 🖾

THE ORIG

NATIONAL milk production could fall as low as 8.2 billion litres next season.

How can genetic selection help?

- Proactive: Selection for reduced greenhouse gas emissions
- Reactive: Selection for heat tolerance

🗖 ASI – Production 🛛 📕 Fertility 🔲 Cell Count 📲 Feed Saved 📕 Type 🔲 Survival 🔳 Workability

Selecting for reduced methane emissions

- Dairy cattle account for ~12% of national agricultural GHG emissions in Australia
- Selecting on Australia's national index (BPI):
 - Higher yields, so fewer cows required to produce the same amount of milk
 - Feed Saved EBV leads to cows that are more efficient
 - Fertility and survival means fewer replacements required

CSIRO PUBLISHING

Animal Production Science, 2017, 57, 1451–1456 http://dx.doi.org/10.1071/AN16510

The impact of genetic selection on greenhouse-gas emissions in Australian dairy cattle

Jennie E. Pryce^{A,B,D} and Matthew J. Bell^C

^AAgriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Vic. 3083, Australia.

^BSchool of Applied Systems Biology, La Trobe University, Bundoora, Vic. 3083, Australia.

^CThe University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

^DCorresponding author. Email: jennie.pryce@ecodev.vic.gov.au

Ellinbank research farm

- 32 individual feeding stalls
- 16 metabolism stalls
- 6 climate controlled calorimeters
- 30 auto feeders
- SF₆ to measure methane at grazing

Measure methane emissions of 480 lactating cows

- Feed intake, milk yield
- 480 cows with CH₄ emissions measured
- Ruminal fluid, faecal, milk, blood sampling for microbiome and gene expression analyses
- Milk MIR spectral analyses

Developing genomic breeding values for methane

- Enteric CH₄ production is heritable
 - Gross emissions ~0.1
 - Methane yield/intensity ~0.3
- Sharing phenotypes internationally
- Towards developing GEBVs

How can genetic selection help?

- **Proactive**: Selection for reduced greenhouse gas emissions
- Reactive: Selection for heat tolerance

Use adapted breeds

- Senepol cattle heat tolerant Bos taurus with slick coat
- Mutation in prolactin receptor (SLICK)
 - Littlejohn et al. 2014, Nat Comms, 5:5861
- Introgressed into Holsteins

 reduced drop in milk
 production in summer
 - Dikmen et al. J Dairy Sci. 2014 97:5508.
- Gene editing target

How cows react to hot conditions:

- Seek shade
- Panting
- Find water
- Eat less
- Reduce yield

AGRICULTURE VICTORIA

Journal of Dairy Science Volume 92, Issue 8, August 2009, Pages 4035-4045

Research-article

Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle

J.P. Sánchez ^{*} Ջ ⊠, I. Misztal [†], I. Aguilar ^{†,‡}, B. Zumbach [§], R. Rekaya [†]

Show more

https://doi.org/10.3168/jds.2008-1626

Get rights and content

Open Archive in partnership with American Dairy Science Association (ADSA) Under an Elsevier user license

open archive

x 🌒 --

Defining heat tolerance

Adapted from Bloemhof et al. (2008)

Heritabilities

			-	
Trait affected by heat stress	Holstein	Jersey	20°S —	NORTHERN TERRITORY QUEENSLAND
Milk yield	0.22	0.33	30°S –	WESTERN AUSTRALIA AUSTRALIA AUSTRALIA NEW
Fat yield	0.20	0.26	_	SOUTH
Protein yield	0.23	0.27	40°5 —	

10°S

110°E

120°E

J. Dairy Sci. 99:2849-2862 http://dx.doi.org/10.3168/jds.2015-9685 © American Dairy Science Association[®], 2016.

Genomic selection for tolerance to heat stress in Australian dairy cattle

Thuy T. T. Nguyen,*¹ Phil J. Bowman,* Mekonnen Haile-Mariam,* Jennie E. Pryce,*† and Benjamin J. Hayes*† *BioSciences Research Division, Department of Economic Developments, Jobs, Transport and Resources, and Dairy Futures Cooperative Research Centre, Agribio, 5 Ring Road, Bundoora, Victoria 3083, Australia †La Trobe University, Bundoora, Victoria 3083, Australia

150°E

ICTORIA

TASMANIA

160°E

140°E

130°E

Genomic Selection

Reliabilities

Breed	GEBV for heat tolerance	Reliability (%) of genomic EBV
Holstein	Milk	19
	Fat	20
	Protein	26
Jersey	Milk	24
	Fat	25
	Protein	27

Genomic Information Nucleus (Ginfo)

- Started in 2013
- >100 farms from across Australia and growing
- Selected for data quality and quantity
- Part of DataGene
- Research invests in Ginfo through genotyping lactating cows

Ginfo cows improved reliability

Breed	GEBV for heat tolerance	Without Ginfo Reliability (%)	With Ginfo Reliability (%)	
Holstein	Milk	19	42	
	Fat	20	40	
	Protein	26	38	
Jersey	Milk	24	36	
	Fat	25	38	
	Protein	27	38	TORI

Correlations with protein and fertility EBVs

Breed	GEBV for heat tolerance	Protein yield	Fertility
Holstein	Milk	-0.72	0.39
	Fat	-0.43	0.38
	Protein	-0.75	0.29
Jersey	Milk	-0.75	0.27
	Fat	-0.63	0.21
	Protein	-0.88	0.15 CTOF

Validation under experimental conditions

TEA

1

Validation of heat tolerance breeding value

 400 heifers evaluated using genomics

• Extreme (24 high, 24 low) for heat tolerance breeding values

 Simulated heat wave event at Ellinbank Research Farm Garner et al (2016) Scientific Reports

Heat tolerant cows had a.....

Smaller decline in milk production Lower intra-vaginal temperature

Garner et al (2016) Scientific Reports

Expression

• Decline in production (\$) per unit increase of THI

Components

$$\begin{array}{c} \mathsf{EW}_{m} \overset{*}{+} \mathsf{GEBV}_{\mathsf{HTm}} \\ \mathsf{EW}_{f} \overset{*}{+} \mathsf{GEBV}_{\mathsf{HTf}} \\ \mathsf{EW}_{p} \overset{*}{+} \mathsf{GEBV}_{\mathsf{HTp}} \end{array}$$

Variation in 10,981 genomic bulls at different levels of heat load: Low: Johanna, VIC; Moderate: Kerang, VIC; High: Rockhampton, QLD)

Expression

- Decline in production (\$) per unit increase of THI
- Components

$$\begin{array}{c} \mathsf{EW}_{\mathsf{m}} & * \mathsf{GEBV}_{\mathsf{HTm}} \\ \mathsf{EW}_{\mathsf{f}} & * \mathsf{GEBV}_{\mathsf{HTf}} \\ + \\ \mathsf{EW}_{\mathsf{p}} & * \mathsf{GEBV}_{\mathsf{HTp}} \end{array}$$

Standardised to mean = 100, standard deviation = 5

AGRICULTURE VICTORIA

Heat tolerance ABVg

Temperature-Humidity Index

Genetic trend (decline ~1.5 SD in 20 years)

Economic Development, Jobs, Transport and Resources

Advice to farmers

- Choose bulls from the Good Bulls Guide
- If Heat Tolerance is important, select above average bulls

Trevor Parrish, New South Wales

"Now when I get a list of bulls I'm going to be looking for bulls which combine increased production and increased heat tolerance – they are going to be the ones who buck the trend."

Shane Gardiner, Mt Gambier South Australia

"Heat Tolerance is something we can breed in our cows for free so why not? Like all genetic traits, it will be permanent and cumulative."

Ross Gordon, Cohuna, Victoria

"If two bulls have the same BPI but one has better heat tolerance than that's the one we will be selecting"

What's next for us....

- Impact of heat stress on fertility
 - Hansen and Arechiga (1999) reported reduced estrous behaviours of heat-stressed dairy cows
 - Evidence that conception rate, oocyte quality and pregnancy loss affected by heat
- Impact of heat stress on health
 - More lameness due to more time spent standing?
- Use of mid-infrared spectral data to predict heat tolerance/resilience
 - Hammami et al (2018)
- Genotype by environment interactions
 - USA: Tiezzi et al (2015)
 - Australia: Haile-Mariam et al (2008); Hayes et al. (2009)

Variation across regions

Great Australian Bight 23 h 41 mi

75

Key messages

- The Heat Tolerance ABV identifies animals with greater ability to tolerate hot, humid conditions with less impact on milk production
- Released in December 2017
- Validated in research conditions
- The Heat Tolerance ABV is unfavourably correlated with production but there are high Balanced Performance Index bulls that are also above average for Heat Tolerance

	nıl Telstra Wi-Fi Call 중 8:36 pm ← 230 Bulls	701	* 💼	7
T	Breed Index Heat Tolerance	Add filter +		3
Sec. 1	BULL	▼ BPI	Heat	
al	7H011395 S-S-I SHAMROCK MYSTIC	337	101	
	29H017732 DE SU 11949 PENALTY	310	102	
	SUPERDUDE GLOMAR SUPERSIRE 1667-ET	307	102	0
	29H017387 RELOUGH DIRECTIVE	307	102	6
	MURCIELAGO CO-OP AARDEMA MURCIELAGO	305	101	1
	011HO11505 EDG ALTAGEFFEN-ET	302	105	4
	CRVEASTON PEAK EASTON	296	101	ALL IN
	Q A Search Bulls Shortlists	000 More		1

Email: jennie.pryce@ecodev.vic.gov.au Twitter: @jenniepryce

Thank you!

Australian Government Department of Agriculture

AGRICULTURE VICTORIA

DataGene Solutions for Herd Development

Senior scientist contract position for 6-12mths

Contact: Michelle Axford (maxford@datagene.com.au)

Expression of heat tolerance EBV

Standardise

- Mean =100
- Standard deviation = 5

