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Introduction

Genomic Selection as Breeding Standard

Genomics to predict breeding values is now standard in animal breeding

» Adopted in pretty much all species
» Mature and effective machinery for the prediction of GEBV

In dairy > 2 million individuals have genotype information.
» Their genotypes not fully integrated or exploited

Opportunity to incorporate population/herd management at the genomic
level.

» Purebred:

» Management of Lethal and Sub-Lethal Mutations.

Functional Inbreeding Depression.
Genetic Diversity.
Breed/Population divergence.
Optimal Matching of Genomes.
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Inbreeding in Dairy Cattle \

The accumulation of inbreeding is unavoidable:
» Intense directional selection
» High variance of reproductive success
» Use of BLUP and truncation selection

Inbreeding "can" reduce the mean value of a trait



How genomic selection influences inbreeding

» The rate of inbreeding per year increases due to shortening
of generation interval

» The rate of inbreeding per generation decreases because
MS is better assessed

» The rate of inbreeding per generation decreases because a
larger pool of genotypes can potentially be sampled

All of these are true but the "net" effect is a faster
accumulation of homozygosity in the population



How genomic selection influences inbreeding
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What does Inbreeding Measures

And why do we care



Inbreeding

The probability of 2 random alleles at the

same locus from 2 gametes which unite to Inbreeding on single locus model
be IBD from a common ancestor Crow and -
Kimura, 1970 z 7
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The mean of the inbred population will therefore 1, : ‘ ‘ ; :
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The reduction in the population mean due to inbreeding —2pqFd:



Inbreeding Depression

Model

Recessive deleterious mutations
Dominance hypothesis

Single locus

Multiple loci
(effects of different mutant
alleles marked in hybrids)

Recessive deleterious mutations
at closely linked loci
Pseudo-overdominance

Single loci with
heterozygous advantage
True overdominance

Parent

genotypes

A/A x a/a

A/A b/b

a/a B8/8

2from Charlesworth Hill 2009

F, hybrid genotypes and their fitness
(or quality) relative to the parent genotypes

Intermediate fitness but
above the parental average
(homozygote shows
inbreeding depression)

High fitness (heterosis and
inbreeding depression)

A
2 Higher fitness than the
parent genotypes
a B
High fitness (heterosis
A/A and inbreeding depression

in homozygote)

Nature Reviews | Genetics 2



Genetic Variance Under Inbreeding

The total genetic variance in the populaton following inbreeding is (Weir and Cockerham,
1977)

Ver = (1 + F)Va+ (1 — F)Vp + 4FCap + FViy — F?Dy,
where V4 and Vp are the additive genetic and dominance variances in the base population (F = 0).

Cap = Z Piaidii, Vi = Z P:6%, Dy = (Z P:6ir)?

When dominance variance is zero,

VAF = (1 + F) Va

Under correct conditions inbreeding may have advantages for selection because the variance of
breeding values is increased.



OK then. How Much Dominance is there then?

[} Genetics Selection Evolution

Estimating Additive and Non-Additive Genetic Variances and
Predicting Genetic Merits Using Genome-Wide Dense Single
Nucleotide Polymorphism Markers

Genomic analysis of dominance effects on milk
production and conformation traits in Fleckvieh
cattle

ort
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Accounting for dominance to improve genomic ey
dairy cows for fertility and milk production traits

BMC Genomics

Journal of Dairy Science
N Dm0, g 1602

Mating programs including genomic
relationships and dominance effects

Dissection of additive, dominance, and imprinting
effects for production and reproduction traits in
Holstein cattle




Milk

OK then. How Much Dominance is there then?
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Primary Question \

» How can two individuals with similar breeding value be
further discriminated on the basis of genomic diversity and
fitness

» How should we do breeding balancing short and long term
gains as well as fitness and overall variability?



Primary Question
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Removing Recessive Load

Johnsson etal. Genet SelEvol (2019)51:14 Genet
hitps/dolorg/10.1186/512711-015-0456-8 enetics
Selection
Evolution
RESEARCH ARTICLE Open Access

Removal of alleles by genome editing
(RAGE) against deleterious load

Martin Johnsson'2®, R. Chris Gaynor'®, Janez Jenko' ®, Gregor Gorjanc' ®, Dirk-Jan de Koning?
and John M. Hickey'"

Recessive
1 edit per sire. 5 edits per sire 20 edits per sire

Average fitness

5
Generation

o editing low frequency first -~ high frequency first
- - random order - intermediate frequency

The lines show averages across 50 replicates



Determining Inbreeding Depression Based on Dominance

timates

Finding Dominance is not easy:

» The proportion of the genetic variance at a causal variant that is captured by markers
is p? ( correlation between SNP and causal variant) for additive variance and p* for
dominance variance *

» Independence between additive and dominance effects does not hold in reality °

» Given the directionality of dominance, the a priori dominance effect of a gene should
be positive so we account for it with inbreeding ©

4Zhu et al 2015
5Huang and Mackay 2016
6Xiang et al. 2016



Removing Recessive Load
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Is Inbreeding still a useful Measure?

Yes it is



How do we measure inbreeding

» Pedigree Based Inbreeding

» Expected probability of IBD
» Underestimate true inbreeding coefficient

» Genomic Based Inbreeding

» Realized proportion of genome IBS
» Approximate IBD probability

» ROH Based Inbreeding

» Estimate local (recent) autozygosity
» Approximate IBD probability

» HBD Based Inbreeding

» Estimate local autozygosity
» Models IBD probability



Pedigree vs. Genomic Inbreeding



Pedigree and Genomic Relatedness

Definition and advantages

Visualizing Genomic Relationships

Full-Sib Relationships

Sire Dam

Progeny | | Progeny | | Progeny
1 2 3
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Relationships



Not all Inbreeding is Created Equal

Inbreeding Load
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Not all Inbreeding is Created Equal

Inbreeding Load

-10logp Pedigree | -10logp Genomic

Milk 4.95 18.06
Fat 4.67 9.96
Pro 2.18 13.47
PL 0.33 1.5
DPR 0.57 0.08

SCS 0.11 0.14



Characterizing Local Inbreeding



ROH

Definition and advantages

Position

2Baes, 2018

Time




ldentifying and managing inbreeding at the global and local
level with the use of genomic information



ROH and related

BMC Genomics X . X
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%Etimal Contribution Selection

GenoDiver

A Coalescent Forward in Time Simulation Toolkit

Home About Parameters OutputFiles Examples



https://jeremyhoward.github.io/Geno_Diver_Website/index.html

Optimal Contribution Selection

ROH
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Optimal Contribution Selection

ROH

EBV

GENERATION



Optimal Contribution Selection

ROH
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%Etimal Contribution Selection

There are many theoretically satisfying ideas...

e ...but nobody uses them Some methods for avoiding inbreeding

 Geneticists don’t breed cows, Optimal contribution theory
farmers do Minimization of progeny inbreeding

Linear programming

¢ Many cows now mated at random .
to a portfolio of bulls Look-ahead mate selection

Selection against lethal alleles
o Everyone thinks their neighbor

Index selection including Mendelian
should use different bulls =

sampling variance
Genomic selection including dominance

USDA’
"Cole, 2019



Mating Design

Local Inbreeding

Locati Haplot:
Haplotype  Functional/Gene name Chromosome mﬁ:;ﬁn fret:|a Ee?\cvyp(e%) Timing?
HBR Black/red coat color/MCIR (MSHR) 18 14.71 0.75 -
HCD Cholesterol deficiency/APOB 11 77.87 2.28 w
HDR Dominant red color/MCIR (MSHR) 3 9.36 0.03 -
HHO Brachyspina/FANCI 21 20.77 1.65 EB
HH1 APAF1 5 62.81 1.28 E
m} Genetics Selection Evolution ::; S_MCZ ; 93':2'3:'58 ;3 E
Home About Articles Submission Guidelines HH4 GART 1 1.99 0.23 E
, HH5 TFBIM 9 91.85-91.94 239 E
HH6 SDE2 16 29.01-29.05 0.44 Old age
Rt e e o e HHB BLAD/ITGB2 1 144.77 0.21 w
Background A simple strategy for managing many recessive HHC CVM/SLC35A3 3 43.26 1.10 EB
- disorders in a dairy cattle breeding program HHD DUMPS/UMPS 1 69.15 0.01 E
ouls end discussion HHM Mulefoot/LRP4 15 76.81 0.05 B
Corlns e e HHP Polledness (dominant)/POLLED 1 2.57 0.88 -
HHR Red coat color/MCIR (MSHR) 18 14.71 3.29 -
‘Tmung of embryomc Ioss/calf death for homozygous animals: B = calf death at/shortly after birth,
E= tion, W = calf death k hs after birth (Cole et al., 2016; Cole et al., 2018). USDAa

aCole, 2019



Mating Design

Local Inbreeding

@ Large amount of research has been conducted on finding lethal
haplotypes (VanRaden et al., 2011; Sahana et al., 2013; Hoff et al.
2017).

e Within livestock populations undergoing selection lethals mutations
are effectively removed from the population, while sub-lethal
mutations are difficult to remove.

e What about sub-lethal mutations (i.e. affected animal doesn’t die,
but instead has reduced performance)?

Mate Two Carriers

Appears in
D d genotype data
as an ROH

D| DD Dd
d Dd dd




Mating Design

Local Inbreeding

Animal
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Use heuristics to "tag* unfavorable ROH genotype

Genotype
Window 8 tagged
121202020202020202020202020202020202022202021111111201111
000202020202020202020202020202020202011122212111111201111
000202020202020202020202020202020202022202020202020222211
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221122222222202022020202002022222220202220211212121222221
221111122222202022020202002022222220202220222200121222221

NonROH 121121212111111111121212121222222221112212121212121212111

Phenotype
8.2
8.0
7.9
7.6
8.2
8.5
7.5
8.1
8.8
8.3
7.5

11.5
12.1

10.5



Mating Design

Local Inbreeding

Animal
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Use heuristics to "tag* unfavorable ROH genotype
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Mating Design

Local Inbreeding

Inbreeding Load Matrix (ILM)

* Summarize effects of unfavorable haplotypes

identified.
¢ Across two individuals:
0 1 2 4

e Within an individual:
0 1 1 4

i=Haplotypes 1 i=Haplotypes 1
(Z* (X1 X1 + X1 Xy + X2 X1 + XoX0) * B Z (Z*(X1y1 +X1Y2 + Xo¥1 + Xo o) * By
i=0 i=0



HaploFinder
Inbreeding Load
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Inbreeding off
Inbreeding LoLd g ° Set 9

Trait -10logp -10logp -10logp
Pedigree Genomic Diag. ILM

Milk 4.95 18.06 27.45
Fat 4.67 9.96 16.56
Pro 2.18 13.47 21.43
PL 0.33 1.5 4.75
DPR 0.57 0.08 1.21

SCS 0.11 0.14 0.58



Inbreeding offset

Inbreeding Load

@ A mate allocation matrix (B; Pryce et al. 2012) constructed:
B,'j = )\1 * EBij—Ag * FU — )\3 * ILM,‘j,

@ Can be constructed based on lethal and unfavorable
haplotypes/mutations.

@ Penalize breeding value based on inbreeding metric and functional

inbreeding.
v
Dam1l Dam2 Dam3 Dam4 Dam5

Sire 1 Bsie1,pam2 Bsire1,0am3 Bsire1,pama  Bsire 1, pams
Sire 2 Bsie2,0am1  Bsire2, pam2 Bsire2,0am4  Bsire 2, 0ams
Sire 3 Bsies, pam1  Bsire3 0am2 Bsie3,0am3  Bsire3, pama

Sire 4 Bsire 4, Dam1 Bsired,Dam3  Bsires,pama  Bsire s, pams
Sire 5 Bsires, am1  Bsires,pam2  Bsires, pam3 Bsire 5, Dams




Characterizing Age of Inbreeding



|ldentify Homozygous by descent

Characterizing HBD segments and age related autozygosity

» HBD happens when individuals inherit copies of ancestral
chromosome

» Copies are inherited through different patterns

» The length of HBD depend on the number of generations
and the population structure

» Inbreeding can then be divided into different age classes
and these related to the overall depression load based on
their age®

8Druet, et al. 2017



HBD

Characterizing the population through HBD
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HBD

Characterizing the population through HBD
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Characterizing the population through HBD

m Trait Regression

2-8Gen -138.1

18-128 Gen Milk -88.3

Trait Pedigree Genomic >128 Gen -185.3
Regression | Regression 2-8Gen -4.44

Milk 91.1 -108.2 18:128 Gen Fat -3.82
>128 Gen -5.12

Fat -3.63 -3.58 28 6en 338

Pro -1.81 -2.86 18-128 Gen Pro 2.60
PL -0.56 -0.85 EAPIE -4.43

DPR -0.12 -0.02 A gen 083
N 18-128 Gen PL -0.32

SCS -0.08 0 128 Gen 0.08
2-8 Gen -0.14

18-128 Gen DPR -0.04

>128 Gen 0.02



Integrating Global And Local Measures of Inbreeding

Mid future

» Characterization annotation of » Validation of haplotypes in larger
haplotypes populations (across breeds)
» Refining HBD structure » Implement ILM for validated haplotypes

EBVy = EBV — \oFp
EBV. = EBV — \Fg
EBV, = EBV
EBV. = EBV



Future Direction



Removing Recessive Load

Optimal contribution
Minimization of progeny inbreeding
Selection against lethal alleles

Index selection including Mendelian
sampling variance

Genomic selection including dominance
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