

Exploiting Homozygosity In The Era of Genomics: Inbreeding, ROH, and Genomic Mating Programs

Joint ADSA-Interbull Session: Breeding and Genetics: Ten Years of Genomic Selection

C. Maltecca^{*}, F. Tiezzi, C. Baes, J.Pryce, J. Cole *cmaltec@ncsu.edu

ADSA Meeting, Cincinnati, Ohio – June 24, 2019

Inbreeding and Genomic Information

Landscape Change

Genomics to predict breeding values is now standard in animal breeding

- Adopted in pretty much all species
- Mature and effective machinery for the prediction of GEBV

In dairy > 2 million individuals have genotype information.

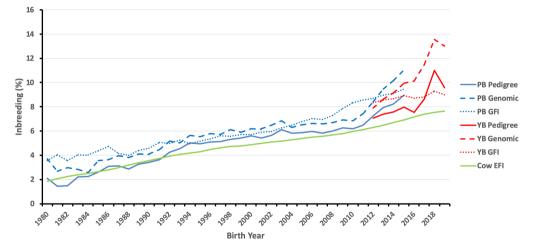
Their genotypes not fully integrated or exploited

Opportunity to incorporate population/herd management at the genomic level.

- ► Purebred:
 - Management of Lethal and Sub-Lethal Mutations.
 - ► Functional Inbreeding Depression.
 - Genetic Diversity.
 - Breed/Population divergence.
 - Optimal Matching of Genomes.

The accumulation of inbreeding is unavoidable:

- Intense directional selection
- High variance of reproductive success
- Use of BLUP and truncation selection


Inbreeding "can" reduce the mean value of a trait

- The rate of inbreeding per year increases due to shortening of generation interval
- The rate of inbreeding per generation decreases because MS is better assessed
- The rate of inbreeding per generation decreases because a larger pool of genotypes can potentially be sampled

All of these are true but the **"net"** effect is a faster accumulation of homozygosity in the population

How genomic selection influences inbreeding

Source: CDCB (April 2019) USDA

N

¹John Cole, 2019

What does Inbreeding Measures

And why do we care

Inbreeding

The probability of 2 random alleles at the same locus from 2 gametes which unite to Inbreeding on single locus model be IBD from a common ancestor Crow and .25 d= 5 Kimura, 1970 eeding (μ) 1.20 Genotypic Value Frequency 1.15 genotype A_1A_1 $R_{11} = p^2(1-F) + pF$ а 1.10 d=.2 A_1A_2 $2R_{12} = 2pq(1-F)$ d $R_{22} = q^2(1-F) + qF$ $A_2 A_2$ -a 1.05 d = 058 d=.0 The mean of the inbred population will therefore be: 0.0 0.2 04 0.6 0.8 1.0 F

 $\mu F = a(p-q) + 2d(1-F)pq$ The reduction in the population mean due to inbreeding -2pqFd:

Inbreeding Depression

Model	Parent genotypes	F ₁ hybrid genotypes a (or quality) relative to	F _i hybrid genotypes and their fitness (or quality) relative to the parent genotypes	
Recessive deleterious mutations Dominance hypothesis Single locus Multiple loci (effects of different mutant alleles marked in hybrids)	A/A × a/a A/A × b/b a/a × b/b	→ A/a → <u>A/a</u> B/b	Intermediate fitness but above the parental average (homozygote shows inbreeding depression) High fitness (heterosis and inbreeding depression)	
Recessive deleterious mutations at closely linked loci Pseudo-overdominance	A b A b × a B a B	→ A b a B	Higher fitness than the parent genotypes	
Single loci with heterozygous advantage True overdominance	A ₁ /A ₁ × A ₂ /A ₂	→ A ₁ /A ₂	High fitness (heterosis and inbreeding depression in homozygote)	

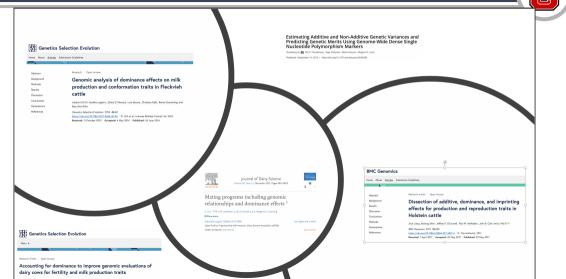
Nature Reviews | Genetics 2

²from Charlesworth Hill 2009

The total genetic variance in the populaton following inbreeding is (Weir and Cockerham, 1977)

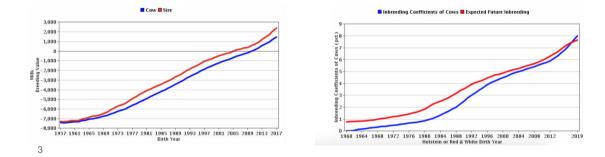
$$V_{GF} = (1 + F)V_A + (1 - F)V_D + 4FC_{AD} + FV_H - F^2D_H$$

where V_A and V_D are the additive genetic and dominance variances in the base population (F = 0).


$$C_{AD} = \sum_{i} P_{i} \alpha_{i} \delta_{ii}, V_{H} = \sum_{i} P_{i} \delta_{ii}^{2}, D_{H} = (\sum_{i} P_{i} \delta_{ii})^{2}$$

When dominance variance is zero,

$$V_{A_F} = (1+F) V_A$$

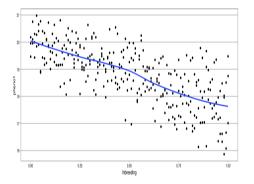

Under correct conditions inbreeding may have advantages for selection because the variance of breeding values is increased.

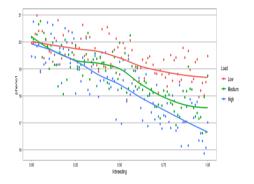
OK then. How Much Dominance is there then?

Harsan Niloo III 🔍 , Jennin E. Pryce, Oacar Ganzález-Recie, Benjamin G. Cocks and Ben J. Hayes Generatiz descoort Desixtion 2016 4865

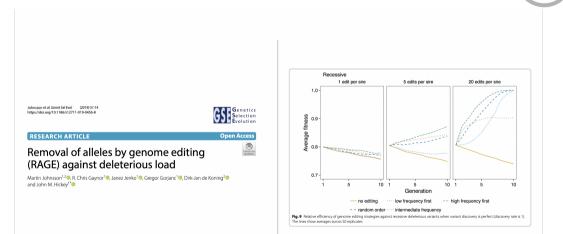
OK then. How Much Dominance is there then?

N


$$V_{GF} = (1+F)V_A + (1-F)V_D$$

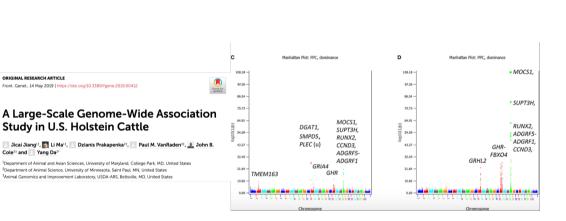


- How can two individuals with similar breeding value be further discriminated on the basis of genomic diversity and fitness
- How should we do breeding balancing short and long term gains as well as fitness and overall variability?


Primary Question

Removing Recessive Load

Determining Inbreeding Depression Based on Dominance Estimates



Finding Dominance is not easy:

- The proportion of the genetic variance at a causal variant that is captured by markers is ρ² (correlation between SNP and causal variant) for additive variance and ρ⁴ for dominance variance ⁴
- Independence between additive and dominance effects does not hold in reality ⁵
- Given the directionality of dominance, the a priori dominance effect of a gene should be positive so we account for it with inbreeding ⁶

⁴Zhu et al 2015 ⁵Huang and Mackay 2016 ⁶Xiang et al. 2016

Removing Recessive Load

Is Inbreeding still a useful Measure?

Yes it is

How do we measure inbreeding

Pedigree Based Inbreeding

- Expected probability of IBD
- Underestimate true inbreeding coefficient

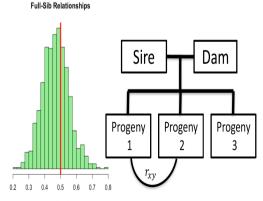
Genomic Based Inbreeding

- Realized proportion of genome IBS
- Approximate IBD probability

ROH Based Inbreeding

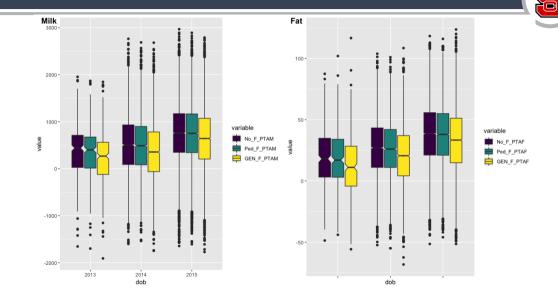
- Estimate local (recent) autozygosity
- Approximate IBD probability

HBD Based Inbreeding


- Estimate local autozygosity
- Models IBD probability

Pedigree vs. Genomic Inbreeding

Pedigree and Genomic Relatedness

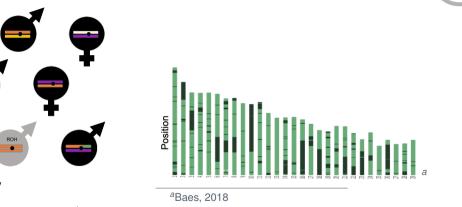


Visualizing Genomic Relationships

Relationships

Not all Inbreeding is Created Equal

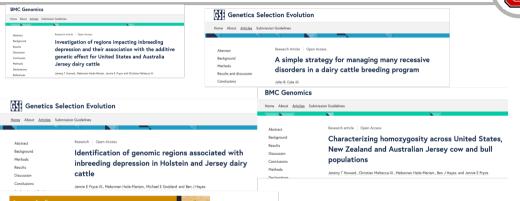
Trait	-10logp Pedigree	-10logp Genomic
Milk	4.95	18.06
Fat	4.67	9.96
Pro	2.18	13.47
PL	0.33	1.5
DPR	0.57	0.08
SCS	0.11	0.14

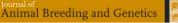

Characterizing Local Inbreeding

ROH Definition and advantages

_.

_...


...



Identifying and managing inbreeding at the global and local level with the use of genomic information

ROH and related

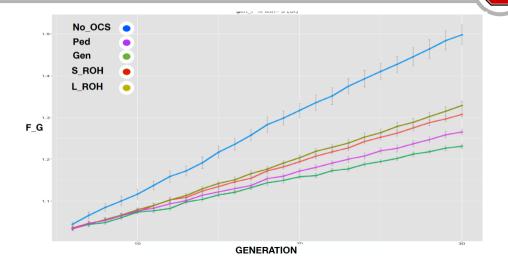
ORIGINAL ARTICLE

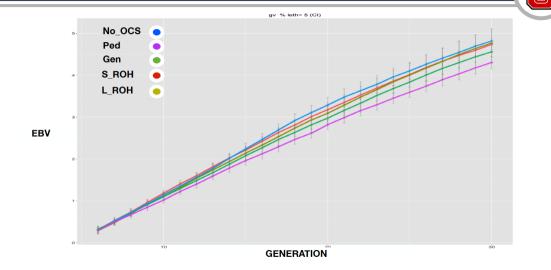
Geno-Diver: A combined coalescence and forward-in-time simulator for populations undergoing selection for comple traits

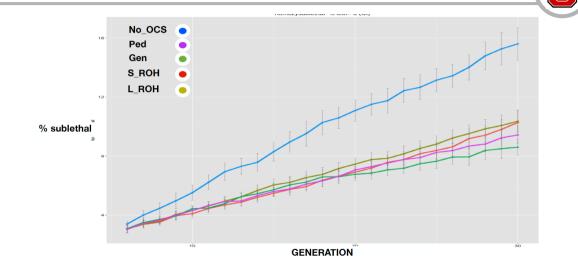
.

A heuristic method to identify runs of homozygosity associated with reduced performance in livestock

J. T. Howard 📼, F. Tiezzi, Y. Huang, K. A. Gray, C. Maltecca


Journal of Animal Science, Volume 95, Issue 10, October 2017, Pages 4318–4332, https://doi.org/10.2527/jas2017.1664 Published: 01 October 2017 Article history \checkmark




GenoDiver

A Coalescent Forward in Time Simulation Toolkit

Home About Parameters Output Files Examples

There are many theoretically satisfying ideas...

- ...but nobody uses them
- Geneticists don't breed cows, farmers do
- Many cows now mated at random to a portfolio of bulls
- Everyone thinks their neighbor should use different bulls

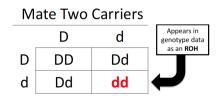
Some methods for avoiding inbreeding Optimal contribution theory Minimization of progeny inbreeding Linear programming Look-ahead mate selection Selection against lethal alleles Index selection including Mendelian sampling variance Genomic selection including dominance

Mating Design

Genetics	Selection Evolution
	Submission Guidelines
Abstract	Research Article Open Access
Background	A simple strategy for managing many recessive
Methods	disorders in a dairy cattle breeding program
Results and discussion	also acts in a daily succe preeding program
Conclusions	John B. Cole III

Haplotype	Functional/Gene name	Chromosome	Location (Mbp)	Haplotype frequency (%)	Timing ¹
HBR	Black/red coat color/MC1R (MSHR)	18	14.71	0.75	_
HCD	Cholesterol deficiency/APOB	11	77.87	2.28	w
HDR	Dominant red color/MC1R (MSHR)	3	9.36	0.03	_
HHO	Brachyspina/FANCI	21	20.77	1.65	E,B
HH1	APAF1	5	62.81	1.28	É
HH2	-	1	93.50-95.58	1.21	E
HH3	SMC2	8	93.75	2.64	E
HH4	GART	1	1.99	0.23	E
HH5	TFB1M	9	91.85-91.94	2.39	E
HH6	SDE2	16	29.01-29.05	0.44	Old age
HHB	BLAD/ITGB2	1	144.77	0.21	w
ННС	CVM/SLC35A3	3	43.26	1.10	E,B
HHD	DUMPS/UMPS	1	69.15	0.01	E
ннм	Mulefoot/LRP4	15	76.81	0.05	в
HHP	Polledness (dominant)/POLLED	1	2.57	0.88	_
HHR	Red coat color/MC1R (MSHR)	18	14.71	3.29	-

¹Timing of embryonic loss/calf death for homozygous animals: B = calf death at/shortly after birth, E = embryonic loss/abortion, W = calf death weeks/months after birth (Cole et al., 2016; Cole et al., 2018).


USDA^a

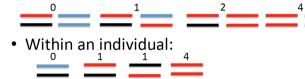
^aCole, 2019

- Large amount of research has been conducted on finding lethal haplotypes (VanRaden et al., 2011; Sahana et al., 2013; Hoff et al. 2017).
- Within livestock populations undergoing selection lethals mutations are effectively removed from the population, while sub-lethal mutations are difficult to remove.
- What about sub-lethal mutations (i.e. affected animal **doesn't die**, but instead has **reduced performance**)?

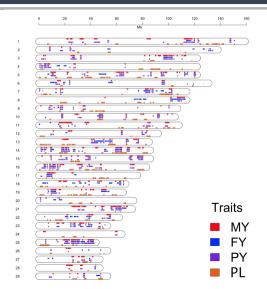
Use heuristics to "tag" unfavorable ROH genotype

	Genotype	
Animal	Window 8 tagged	Phenotype
1	121 202020202020202020202020202020202020	8.2
2	0002020202020202020202020202020202020201112221211111201111	8.0
3	0002020202020202020202020202020202020202	7.9
4	121121212111111202020202020202020202020	7.6
5	121121212111111111020202020202020202020	8.2
6	121102020202020202020202020202020202020	8.5
7	121212120202020202020202020202020202020	7.5
8	121212121102020202020202020202020202020	8.1
9	0002020202020202020202020202020202020202	8.8
10	1211212121111111111020202020202020201112212121212121212111	8.3
11	0002020202020202020202020202020202020202	7.5
11	22112222222202020202020202022222220202020202	11.5
12	2211111222222020220202020202222222020222022220121222221	12.1
NonROF	1211212121111111111111212121212222222211122121	10.5

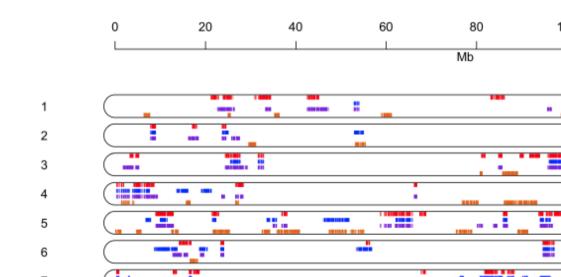
Use heuristics to "tag" unfavorable ROH genotype


	Genotype	
Animal	Window 11 tagged	Phenotype
1	121 <mark>202020202020202020202020202020202020</mark>	8.2
2	0002020202020202020202020202020202020201112221211111201111	8.0
3	0002020202020202020202020202020202020202	7.9
4	121121212111111202020202020202020202020	7.6
5	121121212111111111020202020202020202020	8.2
6	121102020202020202020202020202020202020	8.5
7	121212120202020202020202020202020202020	7.5
8	121212121102020202020202020202020202020	8.1
9	0002020202020202020202020202020202020202	8.8
10	121121212111111111020202020202020201112212121212121212111	8.3
11	0002020202020202020202020202020202020202	7.5
11	22112222222202020202020202022222220202020202	11.5
12	2211111222222020202020202020222222020222200121222221	12.1
NonROF	121121212111111111111121212121222222211122121	10.5

Inbreeding Load Matrix (ILM)


- Summarize effects of unfavorable haplotypes identified.
- Across two individuals:

$$\sum_{l=0}^{l=Haplotypes} (\frac{1}{4} * (X_1X_1 + X_1X_2 + X_2X_1 + X_2X_2) * \beta_l \sum_{l=0}^{l=Haplotypes} (\frac{1}{4} * (X_1Y_1 + X_1Y_2 + X_2Y_1 + X_2Y_2) * \beta_l :$$


HaploFinder Inbreeding Load

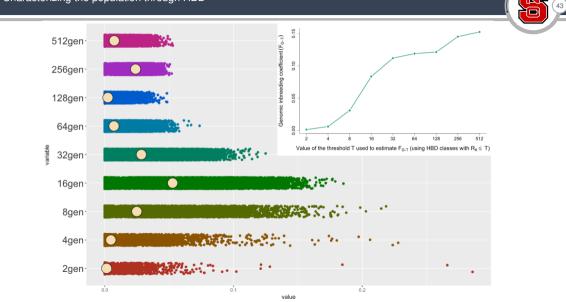
HaploFinder Inbreeding Load

Trait	-10logp Pedigree	-10logp Genomic	-10logp Diag. ILM
Milk	4.95	18.06	27.45
Fat	4.67	9.96	16.56
Pro	2.18	13.47	21.43
PL	0.33	1.5	4.75
DPR	0.57	0.08	1.21
SCS	0.11	0.14	0.58

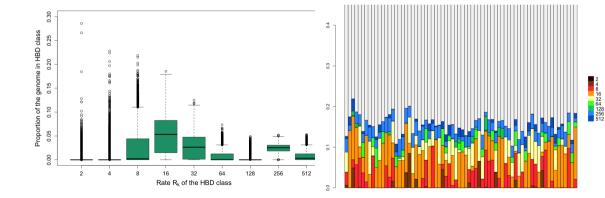
• A mate allocation matrix (B; Pryce et al. 2012) constructed:

$$B_{ij} = \lambda_1 * EBV_{ij} - \lambda_2 * F_{ij} - \lambda_3 * ILM_{ij},$$

- Can be constructed based on lethal and unfavorable haplotypes/mutations.
- Penalize breeding value based on inbreeding metric and functional inbreeding.


	Dam1	Dam2	Dam3	Dam4	Dam5
Sire 1	B _{Sire 1, Dam 1}	B _{Sire 1, Dam 2}	B _{Sire 1, Dam 3}	B _{Sire 1, Dam 4}	B _{Sire 1, Dam 5}
Sire 2	B _{Sire 2, Dam 1}	B _{Sire 2, Dam 2}	B _{Sire 2, Dam 3}	B _{Sire 2, Dam 4}	B _{Sire 2, Dam 5}
Sire 3	B _{Sire 3, Dam 1}	B _{Sire 3, Dam 2}	B _{Sire 3, Dam 3}	B _{Sire 3, Dam 4}	B _{Sire 3, Dam 5}
Sire 4	B _{Sire 4, Dam 1}	B _{Sire 4, Dam 2}	B _{Sire 4, Dam 3}	B _{Sire 4, Dam 4}	B _{Sire 4, Dam 5}
Sire 5	B _{Sire 5, Dam 1}	B _{Sire 5, Dam 2}	B _{Sire 5, Dam 3}	B _{Sire 5, Dam 4}	B _{Sire 5, Dam 5}

Characterizing Age of Inbreeding



- HBD happens when individuals inherit copies of ancestral chromosome
- Copies are inherited through different patterns
- The length of HBD depend on the number of generations and the population structure
- Inbreeding can then be divided into different age classes and these related to the overall depression load based on their age⁸

HBD Characterizing the population through HBD

HBD Characterizing the population through HBD

HBD Characterizing the population through HBD

Trait	Pedigree Regression	Genomic Regression
Milk	-91.1	-108.2
Fat	-3.63	-3.58
Pro	-1.81	-2.86
PL	-0.56	-0.85
DPR	-0.12	-0.02
SCS	-0.08	~0

HBD	Trait	Regression	
2-8 Gen		-138.1	
18-128 Gen	Milk	-88.3	
>128 Gen		-185.3	
2-8 Gen		-4.44	
18-128 Gen	Fat	-3.82	
>128 Gen		-5.12	
2-8 Gen		-3.38	
18-128 Gen	Pro	-2.60	
>128 Gen		-4.43	
2-8 Gen		-0.83	
18-128 Gen	PL	-0.32	
>128 Gen		0.08	
2-8 Gen		-0.14	
18-128 Gen	DPR	-0.04	
>128 Gen	2.11	0.02	

Near future

- Characterization annotation of haplotypes
- ► Refining HBD structure

Mid future

- Validation of haplotypes in larger populations (across breeds)
- Implement ILM for validated haplotypes

$$\begin{split} & EBV_{c0} = EBV - \lambda_0 F_P \\ & EBV_{c1} = EBV - \lambda_1 F_G \\ & EBV_{c2} = EBV - \lambda_1 F_{G_{hbd_1}} \dots - \lambda_n F_{G_{hbd_n}} \\ & EBV_{c3} = EBV - \lambda_1 F_{G_{hbd_1}} \dots - \lambda_n F_{G_{hbd_n}} - \lambda_{n+1} F_{ILM} \end{split}$$

Future Direction

Removing Recessive Load

- Optimal contribution
- Minimization of progeny inbreeding
- Selection against lethal alleles
- Index selection including Mendelian sampling variance
- · Genomic selection including dominance

Acknowledgments

- Christine Baes
- ► John Cole
- ► Jennie Pryce
- ► Francesco Tiezzi
- Matteo Bergamaschi
- Jeremy Howard
- Emmanuel Lozada

Smithfield

Premium Genetics Group

USDA

NIFA

