Choices in genomic evaluation for small populations

S. Andonov, D.A.L. Lourenco, B.O. Fragomeni, Y. Masuda, I. Pocrnic, S. Tsuruta, and I. Misztal
USCM, Macedonia; UGA, USA
Background

- Small Holstein populations
 - Croatia 40k
 - Macedonia 35K
 - Slovenia 35K
- International trade of genetic material
 - Semen & embryos
 - Pregnant heifers
- Incomplete relationship (lack of deep pedigree)
- National genomic breeding programs - small reference population
- Selection of young animals?
- Progeny testing?
Background

• Choices for small populations are:
 – If data is available include proven bulls/dam into evaluation
 • Pedigree;
 • Phenotypes;
 • Genomic.
 – Become part of other breeding program
 – Participate into consortia.
Background

• Simulation study
• Test different sources of information from connected small (P_s) and large population (P_L)
• 4 cases
Material

- Large population
 - 2K ♂ and 20K ♀ 20 generations
 - h² = 0.3
 - Replacement sire=0.9; dam=0.3
 - Selection criterion - high EBV,
 - Genotypes for generations 14-20th

- Small population
 - 150 ♂ x 2000 ♀ (Pᵢ 18 g)
 - 2⁰ gen + 100 ♂ (Pᵢ 19 g)
 - h² = 0.3
 - Replacement sire=0.5; dam=0.3
 - Selection criterion - phenotype,
 - Genotypes for 1-3 generations (6000 animals total)
Material

• Genomic
 – 45000 biallelic SNP
 – 29 chromosomes
 – 450 QTLs

• Average of 5 replicates
Small + GEBV_large

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype Ps</td>
<td>3166</td>
</tr>
<tr>
<td>Pedigree Ps</td>
<td>22,885</td>
</tr>
<tr>
<td>Genotypes Ps</td>
<td>6000</td>
</tr>
<tr>
<td>GEBV PL sires</td>
<td>4475</td>
</tr>
</tbody>
</table>
Small + Large

Phenotype $P_S + P_L$

Pedigree $P_S + P_L$

Genotype $P_S + P_L$

$P_S P_L$ GEBV

Phenotype $P_S + P_L$	224746
Pedigree $P_S + P_L$	425684
Genotypes $P_S + P_L$	59558
SNP effect * SNP(P_S) = P_{L-SNP} GEBV
Methods

- BLUPF90 family (Misztal et al., 2015)
- Genetic connection between PL and PS (r_g) – REML
- Small and Small+Large, Genomic EBV - ssGBLUP
- Small+GEBV_Large - ssGBLUP with external information
- SNP_Large - ssGBLUP extended to calculate SNP effects
- Model:
 \[y = 1\mu + Za + e \]
 - \(Z \) incidence matrix for the random effect in \(a \).
 - \(a \sim N(0, H\sigma^2_a) \); \(\sigma^2_a \) \(H \) matrix that combines pedigree and genomic relationships
Validation

• Correlation GEBV-TGEBV

• Validate
 – 1000 genotypes of P_S (334 in 3^{rd} generation)
 – 3000 genotypes of P_S (1000 in 3^{rd} generation)
 – 6000 genotypes of P_S (2000 in 3^{rd} generation)

• $r_g = 0.84 \pm 0.019 \ (P_L - P_S)$
Results
Achievements

• Small population stand alone
 • Moderate accuracies
 • Need to increase daughter groups per sire in P_S

• Small population + external GEBV of sires
 • slightly improve the accuracy
 • add complexity to the evaluation
Achievements

• Join evaluation of P_S and P_L
 The highest accuracies

• SNP effects for P_L to assess GEBV
 Considerably high accuracies
 Constant over replicates
 No need pedigree and performance of P_S
 Constrain - prediction of GEBV for animals with SNPs
 all candidates need to be genotyped
Practical implementation

• Small population
 – share genomic in consortia
 – young animals - DGV
 – continue breeding program with GI (verify realization of GEBV)
 – Check genetic gain

• Large population
 – identifying animals with high GEBV and low inbreeding
Thank you!