Using genomic data to estimate genetic correlations between countries with different levels of connectedness

Bonifazi R, GM Neufeld, T Pook, J Vandenplas, MPL Calus

International evaluations

- Compare animals' genetic values across countries
- **Differences**: trait definition, scale and genetic bases, GxE
- Multi-trait models: countries as different correlated traits
- r_G between countries < 1
- Impact on international (G)EBVs \rightarrow **Crucial** for international evaluations

Estimation of r_G between countries

- Requires genetic connections between countries
- "Common Bulls" (CB)
- Beef cattle, small (dairy) populations \rightarrow low use AI/low #CB \rightarrow low connections
- Maternally influenced traits → "Common Maternal Grand-Sires" (CMGS)
- Estimation methods: pedigree-based
- Low connectedness → issues:
 - Long computational times, large SE
 - Impossible to estimate r_G

Genomic data in international evaluations

- Interbeef single-step evaluations (Bonifazi et al. 2022, GSE)
- Genomic data to estimate r_G between countries
- Disconnected populations (according to pedigree) → Connected via genomic information (e.g. Wientjes et al. 2015, 2018, GSE)

Investigate if **genomic data** help

to estimate r_G between countries

more accurately than **pedigree**

at different level of connectedness

Simulated data and (genetic) parameters

- Two beef cattle populations of same breed
- Maternally affected trait: weaning weight

- Genetic parameters (Bonifazi et al. 2020, GSE)
- POP₁ POP₂ $h^2 \& r_G$ ~2,000 QTLs Mat Dir Mat Dir 0.30Dir 30 chr (1 Morgan) POP₁ Mat -0.2 0.15 0.80 0 0.30 Dir POP₂ 0.70 Mat -0.2 0

Scenarios: connectedness between POPs

Scenario	n. CB	n. off. from CB	GS	Mean n. CMGS	Mean n. grand-off. from CMGS	Mean GS _{смgs}
Disconnected	0	0	0	0	0	0
Low	10	1,500	0.02	8	2,322	0.04
Medium	20	3,000	0.05	16	4,544	0.07
High	80	12,000	0.18	63	15,364	0.23

Names based on GS thresholds of Bonifazi et al. 2020, GSE

10 replicas

GS = Genetic similarity

CB, CMGS = Common Bulls, Common MGS

Estimation of r_G : sources of information

- Pedigree 14 generations \rightarrow 11 generations (space limitations)
- H as Legarra et. al. 2009, JDS (scaling G inbreeding to A₂₂)
- G as VanRaden 2008, JDS, method 1
- ¹ Maternal effects \rightarrow need prev. gen. relationships (effectively computed as H-mat)

Software

- Simulation: MoBPS (miraculix & RandomFieldUtils)
- https://github.com/tpook92/MoBPS

- GRM: calc_grm (Calus and Vandenplas, 2013, WUR)
- *r_G* estimation: *mtg2* (CORE GREML: maternal effects) ¹
- Mimic current Interbeef
- Bivariate model: countries as correlated traits (no residual corr.)
- Raw data
- Starting values: within-country (co)variances, 0 across-country

¹ Lee and van der Werf, 2016, Bioinformatics; Zhou et al., 2020, Nat. Commun.

Results

- Genetic correlations
- Standard errors
- Computational resources

Standard Errors A A G H

Computational requirements

	Α	G	н
Animals in matrix	66,000	24,000	66,000
Elapsed time (hours)	3.1	7.3	2.9
RAM peak usage (Gbytes)	106	13	102

Averages across scenarios and replicas

Conclusions

- Genomic data more accurate estimates of r_G between countries and smaller SE for:
 - **disconnected** and **low connected**: beef cattle, small (dairy) populations (e.g. AYR, GUE, JER)
 - maternal *r_G*
- Medium/high connected: no benefits (e.g. HOL)
- **G** with 3 gen. (pheno & geno) similar to **H**, but less comput. resources
- Real data: unbalanced, <5 off/dam, large datasets (connected sub-set → include genomic info in connectedness measures)

Acknowledgements

Martin Schlather, Universität Mannheim

Hong Lee, University of New England

Pascal Duenk and Noraly van Hemert, Wageningen University & Research

Interbeef, Interbull, ICAR, national organisations

Take-home messages

- Genomic data more accurate estimates of r_G between countries and smaller SE for:
 - **disconnected** and **low connected**: beef cattle, small (dairy) populations (e.g. AYR, GUE, JER)
 - maternal r_G
- Useful for beef cattle, small (dairy) populations

Thanks for your attention

renzo.bonifazi@wur.nl

