Development of Methane Efficiency Evaluations for Canadian Holsteins

B. Van Doormaal¹, Hinayah R. Oliveira¹,², Saranya Narayana¹, Allison Fleming¹, Hannah Sweett¹, Francesca Malchiodi⁴, Janusz Jamrozik¹,³, Gerrit Kistemaker¹, Peter Sullivan¹ and Filippo Miglior¹,³

¹Lactanet Canada, Guelph, ON, Canada, ²Purdue University, West Lafayette, IN, ³University of Guelph, Guelph, ON, Canada, ⁴Semex, Guelph, ON, Canada
Lactanet’s Genetic Toolbox

Feed Efficiency
April 2021

Body Maintenance Requirements
April 2023

Methane Efficiency
April 2023

- Reduce Feed Costs
- Reduce Methane Emissions
Collected Methane

- Collected from the University of Guelph and University of Alberta under two international projects:
 - Both herds used the GreenFeed system (C-Lock Inc., Rapid City, SD)
 - Average CH4 production (g/d) was recorded multiple times per day for at least 5 consecutive days, mainly in first lactation cows
 - End result: Weekly average of daily CH4 production
CH$_4$ Analysis at University of Guelph

A Pivotal Result

- Research led by Flavio Schenkel, Saeed Shadpour and Christine Baes
- Close involvement of Filippo Miglior, Lactanet’s Senior Advisor for Genetic Strategic Initiatives
- A cow’s milk MIR data can be used as a good predictor of its methane production
Milk MIR Investment by Lactanet

- Great potential and availability
- Milk MIR data on **90% of milk recorded cows** since 2018

≈13M records from 7,171 herds
≈1.6M cows
≈143,120 genotyped cows
MIR Data Processing

Individual milk samples processed by FOSS Milkoscan FTIR spectrophotometers
Predicting Methane

• MultiLayer Perceptron Artificial Neural Network based on Bayesian regularization model
• 241 MIR spectral datapoints used as input predictors (excluded uninformative and water associated regions)
• Input was weekly average of daily methane production from 496 first lactation cows in two herds

Prediction Accuracy = 0.70
Genetic Correlation = 0.92 (0.22)
Average Predicted and Collected CH$_4$ by GEBV Class

- **Low (<= -1 SD)**
 - Predicted CH$_4$:
 - CH$_4$:

- **Medium (+1 > SD < -1)**
 - Predicted CH$_4$:
 - CH$_4$:

- **High (>= +1 SD)**
 - Predicted CH$_4$:
 - CH$_4$:
Genomic Evaluation for Methane Efficiency

Lactanet and Semex collaborated on the development of a new, single step genomic evaluation system.

- Data analysis and selection
- Multi-trait evaluation model
- Estimation of variance components
- Data processing, single step computations, post-processing, etc.
Data Used for Genetic Evaluation *(April 2023)*

- First lactation Holsteins from 6,128 herds
- Between 120 and 185 DIM

<table>
<thead>
<tr>
<th>Records</th>
<th>773,743</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows</td>
<td>541,565</td>
</tr>
<tr>
<td>Sires</td>
<td>10,765</td>
</tr>
<tr>
<td>Genotyped Animals</td>
<td>134,963</td>
</tr>
<tr>
<td>Genotyped Cows</td>
<td>68,138</td>
</tr>
<tr>
<td>Genotyped Sires</td>
<td>7,921</td>
</tr>
</tbody>
</table>
Genomic Evaluation for Methane Efficiency

• **Single-step four-trait Animal Model (using MiX99)**
 • Predicted Methane (CH$_4$, g/d), Milk (kg/d), Fat (kg/d), Protein (kg/d)
 • Fixed: Age at calving, DIM, Year-Season of calving
 • Random: Herd-Test-Date, Permanent Environment, Animal

<table>
<thead>
<tr>
<th></th>
<th>Predicted CH$_4$</th>
<th>Milk Yield</th>
<th>Fat Yield</th>
<th>Protein Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted CH$_4$</td>
<td>0.23</td>
<td>-0.13</td>
<td>0.38</td>
<td>-0.11</td>
</tr>
<tr>
<td>Milk Yield</td>
<td>-0.06</td>
<td>0.38</td>
<td>0.48</td>
<td>0.83</td>
</tr>
<tr>
<td>Fat Yield</td>
<td>-0.18</td>
<td>0.66</td>
<td>0.27</td>
<td>0.71</td>
</tr>
<tr>
<td>Protein Yield</td>
<td>0.01</td>
<td>0.90</td>
<td>0.74</td>
<td>0.28</td>
</tr>
</tbody>
</table>

all approximated SE are <0.033
Genomic Evaluation for Methane Efficiency

• **Methane Efficiency (ME):**
 - Calculated via linear regression (recursive re-parameterization) using GEBV for Predicted CH$_4$ and each of Milk, Fat and Protein yields

<table>
<thead>
<tr>
<th>Predicted CH$_4$</th>
<th>Milk Yield</th>
<th>Fat Yield</th>
<th>Protein Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.13</td>
<td>0.38</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

* Methane Efficiency helps to reduce the methane production of the cow and herd without impacting production levels*
Expression of Methane Efficiency

(Official Sires)

Methane Efficiency is a functional trait expressed as a Relative Breeding Value.

- **Average:** 100
- **SD:** 5

The higher an animal’s RBV the more efficient they are (i.e.: they produce less CH₄).

74% of RBVs fall between 95 and 105
Methane Efficiency is Truly a New Trait

- Methane Efficiency does not have a significant unfavorable correlation with any other evaluated trait
- Selection for Feed Efficiency does not also improve Methane Efficiency
 - Both traits are independent of production yields
Interpretation

Reduce CH$_4$ production by selecting for higher Methane Efficiency without impacting production traits

- 5-point ↑ in a sire’s RBV for ME, daughters are expected to produce 3 kg less CH$_4$ per year
- 1.5% decrease in CH$_4$ emissions per cow per year
- Herd owners selecting for ME can achieve 20-30% reduction in CH$_4$ emissions from their herd by 2050
Summary

• Lactanet has a portfolio of traits to genetically select for improved environmental sustainability
• Predicting CH$_4$ using milk MIR data has proven to be a key and rapid alternative to using collected CH$_4$
• Methane Efficiency allows selection for reduced CH$_4$ emissions without impacting production levels
• Lactanet is investing and (co)leading several research projects to help achieve the “Dairy Net Zero” goal
A Team Effort

Hinayah Oliveira
Saranya Narayana
Filippo Miglior
Allison Fleming
Janusz Jamrozik
Gerrit Kistemaker
Hannah Sweett
Brian Van Doormaal

Christine Baes
Flavio Schenkel
Saeed Shadpour

And all grad students and post-docs that every day, three times a day have been collecting CH4 data since 2016

Thank You!

Francesca Malchiodi
Mike Lohuis
Jay Shannon

Dagnachew Hallemaram
Graham Plastow
Paul Stothard