

Genetic evaluation for feed intake in the Netherlands and Flanders. impact on efficiency and responses

G. de Jong, R. van der Linde, Y. de Haas, G.C.B. Schopen, R. F. Veerkamp

Interest in genetics of feed efficiency

- Feed efficiency
 - Feed important variable cost
 - Environmental/greenhouse gasses
 - More for less"
- Develop (procedure to predict) feed intake (DMI) breeding values for Dutch bulls and cows

Feed intake and response. Interbull meeting 2016

Using feed intake data

1. Data on 3200 cows in lactation 1,2 and 3

- collection of feed intake, milk yield and body weight
- genotypes (1300 cows + sires of cows)
- 2. Parameters estimated
 - base for routine evaluation

Parameters (1)

Trait	h2	Genet. Stdev (kg/day)
Dmi lact 1	0.28	1.24
Dmi lact 2	0.25	1.39
Dmi lact 3	0.20	1.51

Parameters (2) – genetic correlations

	dmi1	dmi2	dmi3	milk	fat	protein	body weight
dmi1							
dmi2	0.88						
dmi3	0.80	0.89					
milk	0.55	0.58	0.56				
fat	0.58	0.60	0.58	0.50			
protein	0.59	0.61	0.59	0.91	0.65		
body weight	0.67	0.45	0.41	0.10	0.10	0.10	

Using feed intake data

- 1. Data on 3200 cows in lactation 1,2 and 3
 - collection of feed intake. milk yield and body weight
 - genotypes
- 2. Parameters estimated
 - base for routine evaluation
- 3. Model routine evaluation

Model for dry matter intake

DMI = experiment

- + year*month
- + calving season
- + age at calving
- + stage of lactation
- + breed
- + perm. environment
- + COW
- + error

Cow: usage of pedigree and genotypes (H-matrix)

Using feed intake data

- 1. Data on 3200 cows in lactation 1,2 and 3
 - collection of feed intake, milk yield and body weight
 - genotypes
- 2. Parameters estimated
 - base for routine evaluation
- 3. Model routine evaluation
- 4. Compute EBVs using: direct DMI genomic prediction indicators milkproduction traits and body weight

Body weight vs dry matter intake

Milk versus body weight

Results on bulls - Holstein

based on genomics and indicators

year of birth	number	rel dmi	ebv dmi	ebv milk	ebv fat	ebv prot	ebv lactose	ebv body weight
2006	444	60	0.11	239	-1	2	13	0.4
2007	324	58	0.22	294	1	4	15	0.2
2008	340	59	0.55	409	10	9	19	6.6
2009	345	56	0.60	448	12	9	21	6.3
2010	343	56	0.94	478	17	13	23	14.2
2011	264	54	1.12	674	22	18	33	11.7
2012	233	54	1.34	628	29	20	31	14.8
2013	171	54	1.59	887	34	26	42	15.8

Reliability based on predictors and genomics -> maximum determined by correlation of predictors with dmi

Extra direct information dmi

only genomic information

Birth year	Number bulls with extra dmi info	Average effect extra dmi info	Average effect reliability extra dmi info	Stdev effect extra dmi info
2006	224	-0.02	5	0.17
2007	158	0.03	5	0.17
2008	162	-0.01	5	0.19
2009	106	-0.05	5	0.18
2010	142	0.00	4	0.17
2011	132	-0.10	5	0.17
2012	127	-0.01	5	0.16
2013	110	-0.10	4	0.16

0.17 is about 12% of genetic stdev

Feed intake and response. Interbull meeting 2016

Breeding goal

Current Inet:

Inet₂₀₁₅ = 0.3 lactose + 2.1 fat + 4.1 protein

weights milk components = price paid by factory - feed cost

• Inet with dmi*:

Inet₂₀₁₇ = 0.5 lactose + 2.7 fat + 5.4 protein – 60.2 kg dmi

weights milk components = price paid by factory weight dmi = cost feed (energy)

Inet₂₀₁₇ direct relationship with maintenance (size/efficiency of cow)

* Production EBV = kg/305 days dmi EBV = kg /day

Inet vs lnet with dry matter intake

spread difference 36 euro -> 30% of genetic st.dev.

Feed intake and response. Interbull meeting 2016

Effect on selection: Inet part of Dutch-Flemish NVI

top 100 NVI – top 100 NVI (incl DMI)

	respons in % gen. stdev	
feed intake	-14%	
protein	-4%	Net +2% in Euro
fat	-6%	
lactose	-5%	
body weight	-21%	Less maintenance
stature	-17%	
longevity	5%	No soos offerst
udder health	-1%	on health
fertility	2%	

Summary

- Dry matter intake EBVs available, based on
 - 3200 cows and indicators
 - genomic prediction available
- DMI part of breeding goal: Inet and NVI
 - 2 percent more efficient
 - no effect on health
- More data collected coming years
 - Increase of reliability genomic predition
- End result: more efficient cow

