

Gembloux Agro-Bio Tech Université de Liège

Genomic evaluation of MIR predicted CH₄ exploiting correlations to MACE evaluated traits

N. Gengler^{*}, H. Soyeurt, J. Vandenplas¹, S. Vanderick and F.G. Colinet

ULg - GxABT, Passage des Déportés 2, 5030, Belgium <u>nicolas.gengler@ulg.ac.be</u>

¹Current address: WUR, Netherlands

Steps Towards Genomic Evaluation for CH₄

Breeding goal

> Trait definition

Phenotype

> Data recording

Genetic parameters

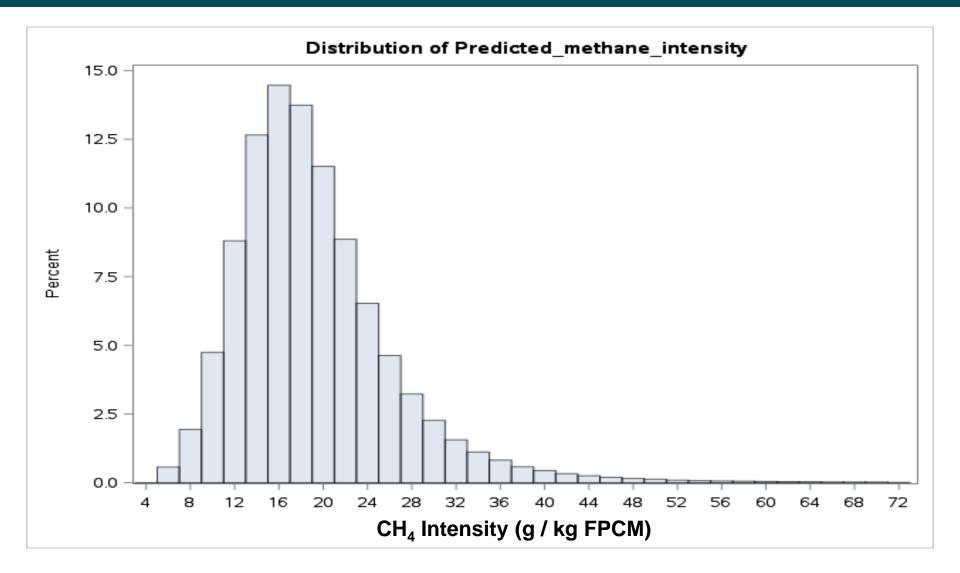
Genetic and genomic evaluation system

Trait Definition

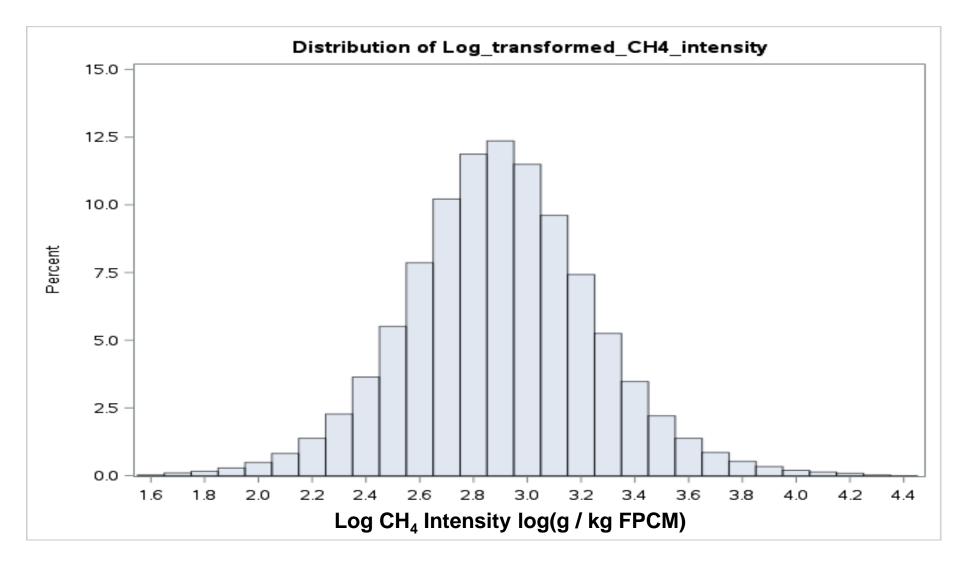
Highly difficult ongoing discussion:

> CH₄ emission vs. intensity (/output) vs. yield (/input)

Many aspects:


- > "Economic"
- > Type of use
- > Potentially: breeding goal trait ≠ evaluated trait

Here we add another aspect:


 Optimizing computational setting to exploit correlations to MACE evaluated traits

Very important aspect in genomic evaluation

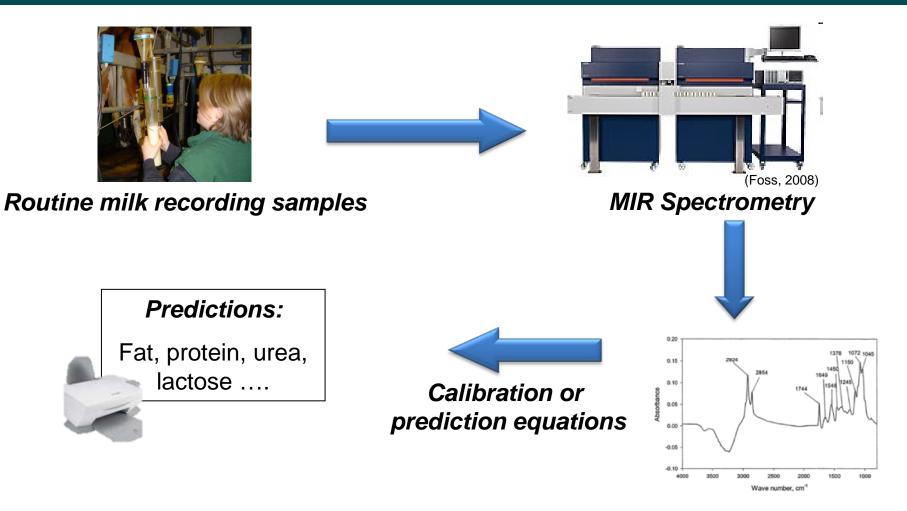
Example of Trait Definition – CH₄ Intensity

Trait Definition – Log(CH₄ Intensity)

→ Residual (Genetic) Methane

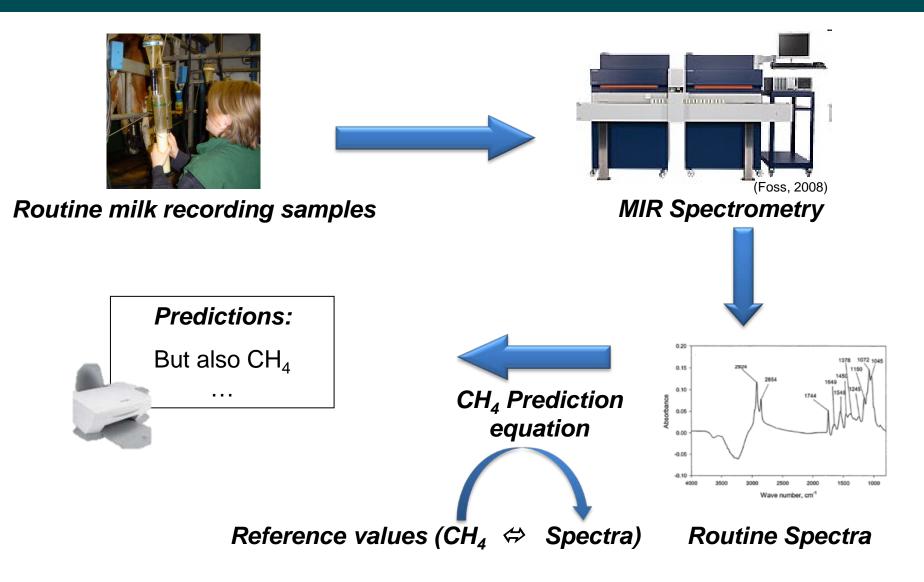
But we know also

- > Log(CH₄ /"milk") = Log(CH4) Log("milk")
- Logical next step:
 - > Residual $CH_4 = CH_4 expected CH_4$ given prod. + maintenance
 - > Use of milk + milk components + body type traits


Advantage: Allows use of widely available MACE-evaluated traits

- > Allows to considered this as a different trait $(r_g < 1)$
- Leads to definition of Residual (genetic) methane (RCH₄)

Interesting set-up of genomic evaluation as bivariate model using: Trait1: CH₄ EBV observed on Walloon cows from MIR data Trait2: CH₄ EBV expected from MACE EBV for correlated traits


Reported RCH₄ EBV computed as difference between EBV above

Reminder: Mid-Infrared (MIR) Predictions

Routine Spectra

Large Scale Routine CH₄ Data Recording

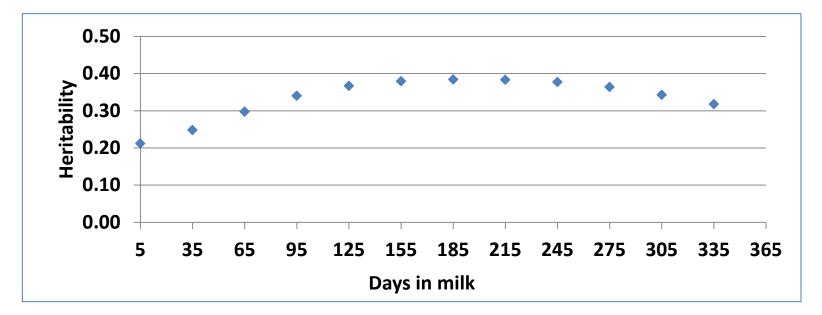
MIR CH₄ Prediction Equation

Developed by the MethaMilk consortium

- > Started by BEL joint by IRL, CHE, DEU, LUX, FRA, AUS,...
- > Ongoing contributions by all groups recognized !
- □ Ongoing calibration work since 2009 ← CRA-W lead partner
 - > Dehareng et al., 2012
 - > Vanlierde et al., 2015 and 2016

Most robust current equation adapted to data used

- SF₆ based reference values from Hol and Hol x Jer
- > Data from BEL and IRL
- > 532 reference records
- $R_c^2 = 0.74 \text{ and } R_{cv}^2 = 0.70$


Animal Production Science, 2016, 56, 258-264 http://dx.doi.org/10.1071/AN15590

> Milk mid-infrared spectra enable prediction of lactation-stagedependent methane emissions of dairy cattle within routine population-scale milk recording schemes

Genetic Parameters

□ Based on 1.3 M records from 64 K cows in 1st, 2nd and 3rd lact.

- > Only a part of the database, can be extended for EBV estimation
- Intra-lactation RR test-day model
- Trait average lactation 305 day CH₄ emission EBV expressed in kg / lactation: 3 lactation average lactation h² = 0.33

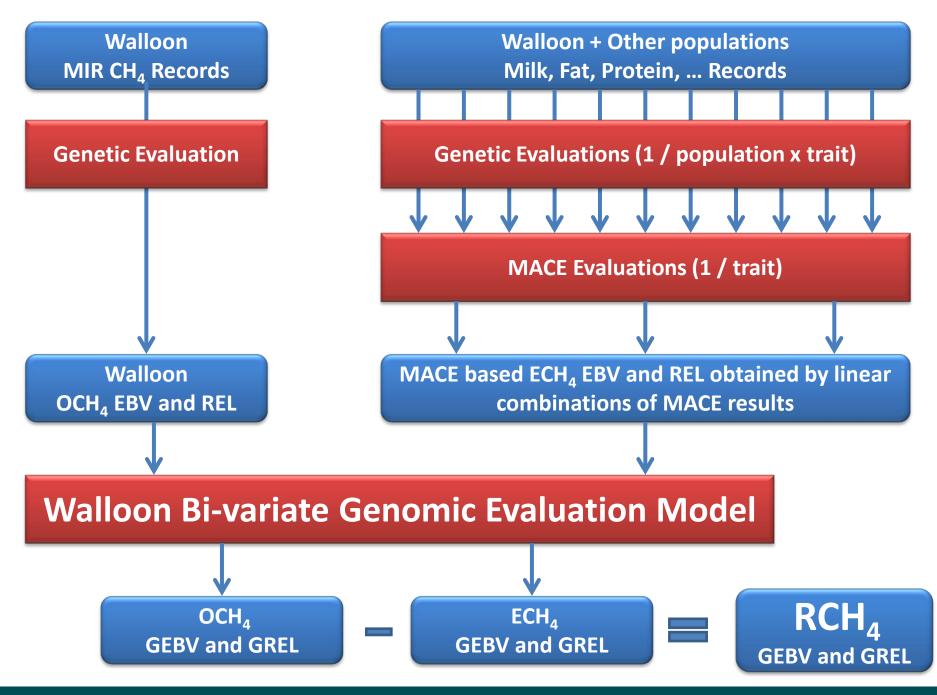
Genomic Evaluation Setup

Combining

INTERBULL BULLETIN NO. 47. Nantes, France, August 23 - 25, 2013

Walloon Single-Step Genomic Evaluation System Integrating Local and MACE EBV

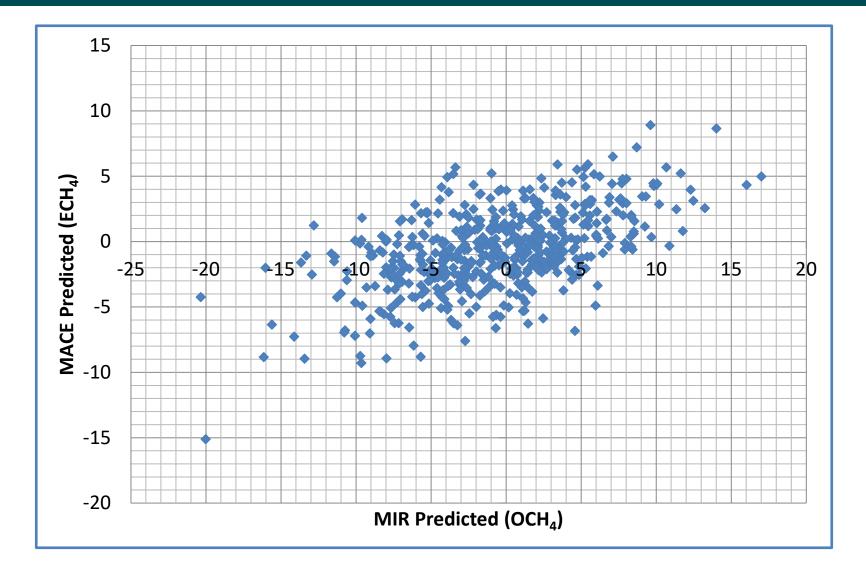
F.G. Colinet¹, J. Vandenplas^{1,2}, P. Faux¹, S. Vanderick¹, R. Renaville¹, C. Bertozzi⁴, X Hubin³, and N. Gengler¹


J. Dairy Sci. 98:9044–9050 http://dx.doi.org/10.3168/jds.2015-9894 © American Dairy Science Association[®], 2015.

Integration of external estimated breeding values and associated reliabilities using correlations among traits and effects

J. Vandenplas,*^{+1,2} F. G. Colinet,* G. Glorieux,[‡] C. Bertozzi,[‡] and N. Gengler*

Bivariate model using EBV and associated reliabilities:


- "Observed" CH₄ EBV (OCH₄ EBV) predicted locally using MIR data from Walloon cows
- "Expected" CH₄ EBV (ECH₄ EBV) predicted from MACE EBV for correlated traits

Expected CH₄ EBV Predicted from MACE EBV

- Group of 519 bulls with at least 30 daughters with CH₄ from MIR and MACE results (and having a genotype)
- Results showed problems using type EBV
- However predicting from milk, fat and protein successful
- **Best predictor correlation of 0.55 (Calo corrected to r_g = 0.64)**
 - Based on milk (-) and fat (+) yields, fat (-) and protein (+) %

Expected CH₄ EBV Predicted from MACE EBV

Expected CH₄ EBV Predicted from MACE EBV

- Group of 519 bulls with at least 30 daughters with CH₄ from MIR and MACE results (and having a genotype)
- Results showed problems using type EBV
- However predicting from milk, fat and protein successful
- **Best predictor correlation of 0.55 (Calo corrected to r_g = 0.64)**
 - > Based on milk (-) and fat (+) yields, fat (-) and protein (+) %
 - Indirect proof that CH₄ from MIR contains information not in milk yield and fat and protein components
- **Hypothesis:**
 - Predictor also based on link of CH₄ to energy in milk (e.g., expressed as ECM) and CH₄ emissions

Practical Issues

 Bulls with MACE only information (no OCH₄ phenotypes and no genotypes) suboptimal

- > Obtaining genotypes for these bulls necessary to work correctly
 → flow of information from correlated trait to OCH₄ GEBV
- All animals with genotypes will get RCH₄ GEBV
 - > Older bulls and cows with records **<** reference population
 - Younger animals and selection candidates
- If people are interested to nominate their animals, do not hesitate to contact me !

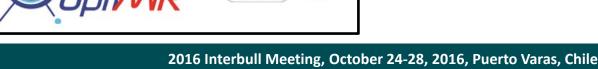
Some Concerns and Perspectives

MIR predicted data limited International collaboration

- > Cf. expanding MethaMilk consortium
- **□** Failure to correlate to type traits
 - Are we missing an element in observed CH₄ as prediction equation only MIR + DIM based BW – DMI (maintenance missing) ?
 - > Need for "real" CH₄ (what ever this could be) ???
- "Breeding Goal Trait" (BGT) or "Index Trait" (IT)
 - RCH₄ more IT then BGT as based on "indirect" predictor traits
 → "real" CH₄ as BGT
- However basic strategy very flexible
 - Adding 3rd trait ("real" CH4) with obviously little (no if pure BGT) data
 replacing OCH₄ in RCH₄ or directly used as reported trait??
 - Also Vandenplas' systems of equations can be amended to include external direct SNP / QTL effects SNP-based Single-Step methods

Acknowledgements

- Support of the Futurospectre partnership
 - > AWE Comité du Lait CRA-W ULg-GxABT
- **CECI Consortium for computational resources**
- Service Public de Wallonie (SPW DGO3, Belgium)


Genotype plus Environment

Integration for a more sustainable dairy production system

contained in this presentation.

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information

- National Fund for Scientific Research
- **Support by different European Projects:**

WITH THE SUPPORT OF

Wallonie

18