Approximating genomic reliabilities for genotyped Walloon Holstein cattle using the SNP-BLUP software - First experiences

SAEID NADERI DARBAGHSHAHI, SYLVIE VANDERICK, RODRIGO REIS MOTA, NICOLAS GENGLER*
Walloon Genomic System

Current Walloon Holstein genomic evaluation system:
Single-step genomic “Bayesian” procedure (ssGBayes)
- Blending genomic, local and MACE information using EBV and REL
- Subtract Walloon information contributing to MACE
Larger Project

- Current Walloon Holstein genomic evaluation system: Single-step genomic “Bayesian” procedure (ssGBayes)
 - Blending genomic, local and MACE information using EBV and REL
 - Subtract Walloon information contributing to MACE

- However needed:
 - “Continuous” generation of GEBV ← flow of genotypes
 - Generating also associated GREL → SNP-BLUP software

- Context of this presentation
Objectives

- Reported here:
 - First experiences with INTERBULL method
 - For genotyped Walloon Holstein cattle and improve its efficiency

- Comparison facilitated because routine GREL in our evaluation based on $\text{diag}(\mathbf{C}^{-1})$
How was the method used?

Step 1: Reliabilities of SNP genotypes using the SNP_BLUP software using ~9000 genotyped animals (R_i^{SNP})

Step 2: Reliabilities of DGV

\[R_i^{DGV} = R_i^{SNP} \]
How was the method used?

Step 3: Adjusting the theoretical reliabilities

\[EDC_{i}^{DGV} = \lambda \ Ri^{DGV} / (1 - Ri^{DGV}) \]

\[EDC_{real-i}^{DGV} = f \times EDC_{i}^{DGV} \]

\[\lambda = \frac{4 - h^2}{h^2} \]

\[f = 1 \]

\[f = \text{regression expected} - \text{observed} \]
How was the method used and tested?

- **Step 4**: Calculating the genomic EDC gain

\[EDC_i^{\text{Gain}} = EDC_{\text{real-}i}^{DGV} - EDC_i^{A22} \]

- **Step 5**: Final reliabilities enhanced with genomic information

\[EDC_i^{\text{Final}} = EDC_i^{\text{CONV}} + EDC_i^{\text{Gain}} \]

\[R_i^{\text{Final}} = \frac{EDC_i^{\text{Final}}}{EDC_i^{\text{Final}} + \lambda} \]

EDC:
- \(EDC_i^{\text{CONV}} \): EDC based on conventional EBV (updated with MACE) (6600 animal)
- \(EDC_i^{W-MACE} \): EDC based on MACE value (2411 animal)

- **EDC** based on conventional and local parent average

How was the method used and tested?

INTERBULL Workshop 2018 Dubrovnik
How was the method tested?

<table>
<thead>
<tr>
<th>Information</th>
<th>Cor(R_REL, IB_REL)</th>
<th>Mean_R_REL</th>
<th>Mean_IB_REL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE</td>
<td>0.99</td>
<td>0.828</td>
<td>0.827</td>
</tr>
<tr>
<td>Sire and/or maternal grand sire with MACE</td>
<td>0.76</td>
<td>0.630</td>
<td>0.626</td>
</tr>
<tr>
<td>Total</td>
<td>0.96</td>
<td>0.684</td>
<td>0.680</td>
</tr>
</tbody>
</table>

Animals with own MACE value

Animals with conventional REL but needing MACE updates
Conclusions

- First results – promising
- Depend clearly on group of animals
- To emulate our system where MACE information flows in ⇒ update of conventional REL also needed
- Currently our published conventional EBV and REL are also updated (other method) ⇒ to be continued

⇒ SNP-REL method entering well current efforts