
University of Wisconsin-Madison

Dairy Science

Daniel Gianola
Sewall Wright Professor of Animal Breeding and Genetics

VARIABILITY OF

CROSS-VALIDATION 

PREDICTION ERRORS:
a statistical (machine) learning perspective



0. PHILOSOPHY OF PRESENTATION



• QUANTITATIVE TRAITS NOT WELL UNDERSTOOD (MECHANISTICALLY)

IN ANIMAL AND PLANT BREEDING

• YET WE DO STUFF (PREDICT-SELECT), SEEMINGLY SUCCESSFULLY

PRE-DINNER: CAN ARGUE FROM PRE-CONCEIVED NOTIONS
POST-DINNER: CAN SAY WHETHER DINNER WAS GOOD OR BAD



GEYSSER (1993)
Heritability: unobservable
Breeding values: unobservable

Prediction: statement about something yet-to-
be observed, eventually observable

Phenotypes and functions thereof: observable



1. DISTRIBUTIONS OF ERRORS 
OF PREDICTION

(least-squares formulae but concepts carry to 
other methods)



1) Sampling over an infinite number of test sets, conditionally on training set and genotypes

2) Sampling over an infinite number of test and train sets, conditionally on genotypes

Pred. bias

Var-bias 
trade off



2) Sampling over an infinite number of test and train sets, AND genotypes

Var-bias 
trade off



2. DATA: PURE RANDOMNESS



> GENCOR
[,1]       [,2]       [,3]

[1,]  1.0000000 -0.6379026 -0.5016693
[2,] -0.6379026  1.0000000 -0.4210596
[3,] -0.5016693 -0.4210596  1.0000000

> h2
[1] 0.5005951 0.4506505 0.4252388

 599 LINES OF WHEAT PLANTED IN 3 ENVIRONMENTS
 GENOTYPED WITH DaRT MARKERS. TRAIT: GRAIN YIELD
 THINK OF ENVIRONMENT AS “COUNTRY”
 APPROXIMATE MULTIVARIATE ML: algorithm did not 

guarantee convergence inside of parameter space
estimates “bent” to attain PD
residual correlations between “countries” were 0.

IMPORTANT G X E SUGGESTED BY NEGATIVE GENETIC CORRELATIONS

QUESTION: HOW DO WE MEASURE PREDICTION UNCERTAINTY 
FROM A SINGLE REALIZATION?



3. PURE RANDOMNESS:
GOODNESS OF FIT



• UNIVARIATE G-BLUPS: “COUNTRIES” 1-2-3 
• MULTIVARIATE G-BLUP: ACROSS COUNTRIES
• MSE FIT: 5000 bootstrap samples of residualsmedian (min-max) 

0.51 (0.41-0.63)

0.38 (0.30-0.48)

0.64 (0.49-0.82)

0.43 (0.32-0.54)

0.65 (0.51-0.90)

0.47 (0.37-0.68)



SMALLER MSE: BETTER FIT

SMALLER MSE: BETTER FIT

SMALLER MSE: BETTER FIT



Message 1

• “Bigger” model (MULTI) described data worse (larger MSE)
than “smaller” mode(UNI)

• “Bigger” model produced more variable results

• Single analysis does not inform on variability. 

• May suggest room for action, but cannot be used as basis
for decision

• Resampling emulates a supply of training-testing sets



4. PURE RANDOMNESS: PREDICTIVE ABILITY
OF UNIVARIATE MODELS

n=599
𝑛𝑇𝑟𝑎𝑖𝑛 = 499
𝑛𝑇𝑒𝑠𝑡 = 100

500 randomly reconstructed 
training-testing sets





Message 2

• The closer the fit (MSE train) the poorer the predictions 
(MSE test)

• R2 in test sets mildly associated with closeness (MSE)

• THE FOLLOWING IS A COMMERCIAL

• R2 (predictive) seldom used in machine learning.
1. It does not reflect bias
2. Gives false idea about reproducibility



Professor of Biostatistics, 

T.H. Chan School of Public Health

Harvard University



La-la Land

Hacksaw 
ridge

to be as small as possible

Add one point to uncorrelated data: 0.9



5. PURE RANDOMNESS: PREDICTIVE ABILITY
OF MULTIVARIATE VERSUS UNIVARIATE





Message 3

• “Bigger” model (MULTI) predicted data worse (larger MSE)
than “smaller” mode(UNI)

• “Bigger” model captured less variation in test sets 
(predictive R2 metric)

• MULTI predictions more variable in the predictive MSE sense
and less variable in the predictive R2 sense 

• Again, resampling emulated supply of training-testing sets,
leading to clear+empirical measures of uncertainty



6. PURE RANDOMNESS: DEALING WITH
PREDICTION “BIAS” VIA THE

ALPHABETA TEST
(regression of predictand on prediction)





BETAS LOWER FOR MULTI IN COUNTRY 1 AND HIGHER IN COUNTRY 2
PERHAPS SOMETHING GOING ON HERE?



OBSERVE SPREAD AND DENSITY SHAPES. 500 RE-SAMPLES NOT ENOUGH



7A. CREATING BIAS ARTIFICIALLY

MODEL TRAINED IN POPULATION 1 WITH BEST 499 
LINES
POPULATIONS 2 AND 3 WITH 499 RANDOM LINES
UNIVARIATE MODELS+ MULTI-TRAIT MODEL
5000 BOOTSTRAP SAMPLES OF THE TESTING SET 
DISTRIBUTION

CAN WE DIAGNOSE SOMETHING FROM THE 
DISTRIBUTION OF PREDICTION ERRORS?





Message 4

MULTI-TRAIT MODEL “IMPROVES” CONFORMITY OF THE
PREDICTION ERROR DISTRIBUTION WITH GAUSSIAN PROCESS
…BY SOME

MOST IMPROVEMENT IS FOR POPULATION IN WHICH TRAINING
BIAS OCCURS



BIASED TRAINING GIVES
“CLOSER” PREDICTIONS



BIASED TRAINING GIVES
“CLOSER” PREDICTIONS



ALPHA TEST CAPTURES BIAS: EASIER TO DIAGNOSE IN “BAD HOMBRES” COUNTRY



BETA TEST CAPTURES BIAS: EASIER TO DIAGNOSE IN “BAD HOMBRES” COUNTRY



7A. CREATING BIAS ARTIFICIALLY

MODEL TRAINED IN POPULATION 1 WITH WORST 499 
LINES
POPULATIONS 2 AND 3 WITH 499 RANDOM LINES
UNIVARIATE MODELS+ MULTI-TRAIT MODEL
5000 BOOTSTRAP SAMPLES OF THE TESTING SET 
DISTRIBUTION

CAN WE DIAGNOSE SOMETHING FROM THE 
DISTRIBUTION OF PREDICTION ERRORS?











POTENTIALLY USEFUL APPROACH: “ROBUST’ REGRESSION
TGBLUP: GENOMIC BLUP WITH t-DISTRIBUTED RESIDUALS

(basic ideas for single trait model presented here)





DEBIASING PREDICTIONS



CONCLUSION
• RESAMPLING USEFUL TO ESTIMATE DISTRIBUTIONS OF PREDICTION 

ERRORS
• BOOTSTRAPPING EMULATES DISTRIBUTIONS UNDER NON-RANDOM 

SAMPLING
• EXTENSIVE TESTING REQUIRED FOR FIRM DIAGNOSIS
• DO NOT WANT OVER-DIAGNOSIS AND  TREATMENT 
• DO NOT WANT TO REMAIN PASSIVE IN THE PRESENCE OF PROBLEMS
• MAIN ISSUE IS SCREWY DATA
• ANOTHER PROBLEM IS HOW SCREWY IT IS, AND WHO-WHY 

(selection) SCREWED IT!
• ROBUST REGRESSION METHODS TEMPER SCREWY DATA
• DEBIASING METHODS AVAILABLE: PAY VARIANCE PENALTY
• METHODS ARE COMPUTATIONALLY INTENSIVE BUT IS THIS A 

SERIOUS ISSUE AT THE TIMES OF MONSTROUS COMPUTERS, 
ARTIFICIAL INTELLIGENCE AND DEEP LEARNING?


