Interbull estimation of SNP effects

Michael Goddard
2017
Sale of semen increasing based on genomic EBVs

We want them to be as accurate as possible

(for all traits in all breeds and countries and between breeds)

i.e. We want estimated SNP effects to be as accurate as possible

High accuracy \leftrightarrow high N, non-linear estimation, one-step, sequence data, functional information
Intro

High N

Human genetics

- meta-analysis of 270,000 people for height → more SNPs, increased accuracy

 - in UK 500,000 people with WGS
 - in USA 1M people with WGS

Dairy cattle

- 1,000,000s world wide if we collaborate
- not within-breed, within-country for all traits
Intro

Non linear method (i.e. Bayesian method)

Higher accuracy
More robust
Benefits from multiple breeds
Benefits from genome sequence data
Benefits from biological knowledge

Combining one-step and non-linear method is research problem
Accuracy $r(DGV, DTD)$ in Aussie Red Bulls

- GBLUP
- BayesR

<table>
<thead>
<tr>
<th></th>
<th>Fat yield</th>
<th>Milk yield</th>
<th>Protein yield</th>
<th>Fat %</th>
<th>Protein %</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBLUP</td>
<td>0.16</td>
<td>0.14</td>
<td>0.07</td>
<td>0.47</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>BayesR</td>
<td>0.23</td>
<td>0.22</td>
<td>0.15</td>
<td>0.54</td>
<td>0.52</td>
<td>0.44</td>
</tr>
</tbody>
</table>
e.g. pleiotropic milk yield and phosphorus QTL on BTA1
<table>
<thead>
<tr>
<th>Additional traits</th>
<th>Effect</th>
<th>P-value</th>
<th>Prop. σ^2_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>phosphorus conc.</td>
<td>41.8</td>
<td>1.10×10^{-11}</td>
<td>0.107</td>
</tr>
<tr>
<td>eSLC37A1</td>
<td>0.160</td>
<td>3.55×10^{-18}</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Key production trait, milk yield			
milk yield – Holstein cows	-37.6	2.19×10^{-3}	0.001
milk yield – Holstein bulls	-40.3	3.17×10^{-3}	0.003
milk yield – Jersey cows	-45.2	3.26×10^{-3}	0.002

That is the allele that *increases* expression of SLC27A1 (an antiporter):

1. *Increases* phosphorus concentration
2. *Decreases* milk yield
Intro

Evaluating bulls ➔ Evaluating SNPs

Interbull
Proposal

Short term

Combine BLUP SNP solutions for 50k SNP chip using SNP-MACE

Medium term

Identify sequence variants for inclusion in national evaluation
Short term SNP-MACE

Within country i data can be modelled

\[y_i = \text{other effects} + Z_i g_i + e_i \]

where \(V(g_i) = B_i \) diagonal
\[V(e_i) = R_i \] diagonal

After absorbing other effects, can mimic equations by

\[(Z_i' R_i^{-1} Z_i + B_i^{-1}) g_i = Z_i' R_i^{-1} y_i \]
Short term
SNP-MACE

Multiple country data

\[y' = (y_i, y_j), \ g' = (g_i, g_j), \ e' = (e_i, e_j) \]

\[V(g) = B = \begin{pmatrix} B_{ii} & B_{ij} \\ B_{ji} & B_{jj} \end{pmatrix} \]

\[V(e) = R = \begin{pmatrix} R_{ii} & 0 \\ 0 & R_{jj} \end{pmatrix} \]

\[(Z'R^{-1}Z + B^{-1}) \ g = Z'R^{-1} \ y \]
Short term
SNP-MACE

Multiple country data

\[(Z'R^{-1}Z + B^{-1}) g = Z'R^{-1} y\]

\[(Z'_i R^{-1}_i Z_i + B'^i \quad B''^j) g_i = Z'_i R^{-1}_i y_i\]
\[(B'^j \quad Z'_j R^{-1}_j Z_j + B''^j) g_j = Z'_j R^{-1}_j y_j\]

That is, we need the \(Z'_i R^{-1}_i Z_i\), \(Z'_i R^{-1}_i y_i\) and \(B_i\) from each country and the \(r_g\) between countries only.

Note, if we have \(Z'_i R^{-1}_i Z_i\) and \(B_i\), we can compute \(Z'_i R^{-1}_i y_i\)
That is, we only need the equations used by each country not the original data.
Short term SNP-MACE

Fall back position

\[Z_i' R_i^{-1} Z_i \] is a 50k x 50k matrix.
If we can’t get it?

Use diagonal elements of \(Z_i' R_i^{-1} Z_i \) and approximate off-diagonals by a sample of \(Z_i' Z_i \) (Yang et al 2012)

And compute by \(Z_i' R_i^{-1} y_i \)
by
\[(Z_i' R_i^{-1} Z_i + B_i^{-1}) g_i = Z_i' R_i^{-1} y_i \]
Short term SNP-MACE

Complications

1. $C(e_i, e_j) \neq 0$ because some phenotypes used in both countries causes off-diagonal blocks in $Z'R^{-1}Z$
can approximate by number of shared animals between countries

2. Different SNPs used in different countries
 Back solve from GEBVs to get equivalent SNP solutions for any SNP set
Short term SNP-MACE

Integration with national evaluations

No one-step within country
 Use Interbull SNP solutions instead of local ones

One step within country
 Use one-step equations with SNP solutions and import Interbull solutions

OR

Treat Interbull SNP solutions as external data in local analysis
Medium term

Increase accuracy GEBV

Increase variance explained by SNPs

Sequence

Imputation errors

Direct genotyping

Increase accuracy of SNP effects

Increase training population (breeds, traits, countries)

Bayesian methods

Identify “causal” variants

Biological information
Medium term

Sequence variants + Bayesian methods + use of biological information

Benefits
 - Increased accuracy
 - Increased stability
 - Multiple breed prediction
 - Prediction of breed differences
Medium term

Sequence variants + Bayesian methods + use of biological information

How to do it?

Same data as BLUP

\[Z_i' R_i^{-1} Z_i \text{ and } Z_i' R_i^{-1} y_i \]

At sequence level

Impute effects

Countries impute genotypes

Countries genotype “causal” variants
Medium term 2

Estimate genetic correlation between countries

Estimate from SNP data instead of pedigree
→ less biased estimates

Uses same data as SNP-MACE
Proposal

Two analyses

1) Production run
 generates EBVs
 one step
 fast
 limited number of SNPs
 could use SNP variances or SNP effects estimated elsewhere
 could use BLUP
Proposal

Two analyses

2) Research run
 Generates list of SNPs or SNP variances or SNP effects
 Slow
 Not necessarily one-step
 Large number of SNPs (WGS)
 Non-linear method (EM plus MCMC)
 First eliminate most SNPs from model
 Second estimate remaining SNPs
Proposal

Research analysis

List of SNPs, SNP variances, SNP effects

Production analysis

EBVs
Proposal

Countries could collaborate through Interbull with one or both of these analyses:

- **Country**: SNP effect + se
- **Interbull**: combine (multi-trait)
- **SNP effects**
 - list of non-zero SNPs
 - combine
- **EBVs**
Proposal

Short term

Combine BLUP SNP solutions for 50k SNP chip using SNP-MACE

Medium term

Identify sequence variants for inclusion in national evaluation

Estimate genetic correlations between countries
Benefits

Short term

More accurate GEBVs

Medium term

Common set of ‘causal SNPs’ are genotyped and used in GE

Multi-breed EBVs with increased accuracy

More robust EBVs

Increased understanding of our traits

Better genetic correlation estimates
Proposal

Actions

Decide to collaborate
Pilot project to implement SNP-MACE (short term)
Research project to find best methodology (medium term)