

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

What's next for dairy cattle breeding?

Gregor Gorjanc

John M Hickey, Janez Jenko, Ino Čurik, Ingelin Steinsland, Finn Lindgren, Marija Špehar, Jana Obšteter, Owen Powell, Maria Lie Selle, Vladimir Brajković

@GregorGorjanc

What's next from me? vs. What's the next BIG thing?

Roadmap

What's next from me?

Opening out the breeding bottleneck

Developing world

Multi-breed & sequence modelling

What's the next BIG thing?

Opening out the breeding bottleneck

- Genomic selection increased turnover of germplasm
- Breeding programs should monitor trends of
 - Genetic means
 - Genetic variances and covariances
- Genomic markers make this computationally tractable and more informative (genome regions)

\rightarrow Do you need to change breeding strategy, implement optimal contribution selection, ...?

Variance parameter and Genetic variance

- Pedigree-based model
 - Variance parameter = base population (additive) genetic variance
 - Is base population a "coherent" time point?
- Marker-based model (SNP-BLUP & GBLUP)
 - Variance parameter = variance of allele substitution effects
 - Which time point? (= the genotype centring value)
- We want genetic variance for a specific group of animals! (by year of birth, breeders vs. producers, different breeders, ...)

Genetic variance of a subset of animals

- Sampling and exact approaches
 - Pedigree-based model (Sorensen et al., GR 2001)
 - Marker-based model (Lehremeier et al., JABG 2017; Schreck et al., BioRxiv, 2019)
- Tedious with pedigree-based model
- Easy with marker-based model
 - Sample marker effects
 - $m^{i}|y \sim N(E(m|y), Var(m|y))$ – For a subset of animals j
 - Calculate breeding values

- Variance

$$\boldsymbol{a}_{j}^{i} = \boldsymbol{W}[\boldsymbol{animals}(j), :]\boldsymbol{m}^{i}$$
$$\sigma_{j}^{2,i} = Var(\boldsymbol{a}_{j}^{i})$$

An example – trend for genetic stand. dev.

~9K bulls with DYD, ~60K pedigree, ~40K SNP markers

Group – Bulls – Cows & Bulls

Trait specific effective population size for bulls: 33.8 (30.0, 39.5)

Genetic variance of a subset of genome!

- Easy with marker-based model
 - Sample marker effects $m^i | y \sim N(E(m|y), Var(m|y))$
 - For a subset of genome k
 - Calculate breeding values $a_{-k}^{i} = W[:, markers(-k)]m^{i}[markers(-k)]$

- Variance
$$\sigma_k^{2,i} = Var(a_k^i)$$

- NOTE: Variance of a sum!
- Genetic variance
 - Genic variance 2p_iq_im_i²

$$Var\left(\begin{bmatrix} a_{k}^{i} \\ a_{-k}^{i} \end{bmatrix}\right) = \begin{bmatrix} \sigma_{k}^{2,i} & \sigma_{k,-k}^{i} \\ \sigma_{k,-k}^{i} & \sigma_{-k}^{2,i} \end{bmatrix}$$
$$Var\left(a^{i}\right) = \sigma_{k}^{2,i} + \sigma_{-k}^{2,i} + 2\sigma_{k,-k}^{i}$$

Genomic analysis of genetic correlation

- Two traits
 - Genetic correlation: -0.06
 - Allele substitution effects correlation: +0.15

Genomic analysis of genetic correlation

- Two traits
 - Genetic correlation: -0.06
 - Allele substitution effects correlation: +0.15
 - Individual chromosomes (n=29): +0.120 [0.099, 0.154] → +0.41

Genomic analysis of genetic correlation

- Two traits
 - Genetic correlation: -0.06
 - Allele substitution effects correlation: +0.15
 - Individual chromosomes (n=29): +0.120 [0.099, 0.154] → +0.41
 - Pairs of chromosomes (n=812): -0.005 [-0.024, 0.016] → -0.47

Opening out the breeding bottleneck

 Monitor genetic means & (co)variances

Breeding program 5 sires/year, 5 sires/year, 5 sires/year, 5 sires/year, 0CS₄₅

- Actively manage it
 - Optimal contribution selection!!!!
 - Mate allocation
 (\inbreeding depression,

↑within-family variance)

What about dominance?

- Data often supports "infinitesimal dominance" (small variance, but significant inbreeding depression)
- Directional dominance model works very well!
 Varona et al. (2018) GSE: 10.1186/s12711-018-0374-1
- Many genotyped & phenotyped cows
 → accurate a & d marker parameters
- Upgrade SNP-MACE to a directional dominance model
 → population specific allele sub. effects: m = a + d * (q p)

Roadmap

What's next from me?

Opening out the breeding bottleneck

Developing world

Multi-breed & sequence modelling

What's the next BIG thing?

Genomic selection in the developing world

- "Phenotype and genotype some cows and you can do genomic selection"
- Small-holder farms are small & very variable
 → hard to separate genetics from environment
- A solution?
 - borrow information from neighbours (spatial model) or
 - measure key environmental indicators

Simulation

Connectedness scenarios

φ**ρ** (φ

- Phenotype = Location + Herd + Genetics + Noise $0.40 \quad 0.25 \quad 0.10 \quad 0.25$
- Location = sum(10 spatially varying covariates)

ď

(œ) (o

Observe 5 covariates with noise and 2 as binary indicators

(\$P) (\$P)

φ) (**ç**

Spatial data and modelling

- Location-based geostatistical model $l \sim N\left(\mathbf{0}, Mat \acute{e}rn(\kappa, \sigma_l^2)\right)$
- SPDE approach of the INLA program

Accuracy of evaluation & prediction

Accuracy of evaluation & prediction

Roadmap

What's next from me?

Opening out the breeding bottleneck

Developing world

Multi-breed & sequence modelling

What's the next BIG thing?

Genomics research trends

- Whole-genome sequencing on the rise
 - Roslin & Genus/PIC sequenced ~8,000 pigs at low-coverage and accurately imputed ~20-60M SNP into ~375,000 pigs
 - Some dairy programs routinely sequence AI bulls
- Pan-genomes
 - Roslin/CTLGH pan-genome of Bos Taurus and Bos Indicus breeds
- We need algorithms & models that handle
 - the scale of the data (#animals & #variants)
 - SNPs, indels, CNVs, ... on autosomal, sex & mitochondrial chr.

Genomics research trends – succinct trees

Kelleher et al. (2018) BioRxiv: 10.1101/458067

Genomics research trends – succinct trees

Kelleher et al. (2018) BioRxiv: 10.1101/458067

- Progeny/child haplotypes likely have similar effect
- Parameters: average correlation $\boldsymbol{\alpha}$ and variance \boldsymbol{v}

Sparse and simple matrix inverse

Extensions

- Different types of mutations with more corr. parameters
 → use of biological information
- Account for divergence times between haplotypes
 → Ornstein–Uhlenbeck process
- Recombination!?

What's next from me? vs. What's the next BIG thing?

What's the next BIG thing?

 Rapid in-vitro embryo tech. with accurate genomic selection on whole-genome sequence

Genome editing
 (perhaps even gene drives!)

Roadmap

Opening out the breeding bottleneck

Developing world

Multi-breed & sequence modelling

What's the next BIG thing?

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

What's next for dairy cattle breeding?

Gregor Gorjanc

John M Hickey, Janez Jenko, Ino Čurik, Ingelin Steinsland, Finn Lindgren, Marija Špehar, Jana Obšteter, Owen Powell, Maria Lie Selle, Vladimir Brajković

@GregorGorjanc

An example – trend for genetic mean

~9K bulls with DYD, ~60K pedigree, ~40K SNP markers

Group – Bulls – Cows & Bulls

Group – Bulls – Cows & Bulls

SPDE approach

Genomics research trends – succinct trees

Kelleher et al. (2016) PCB: 10.1371/journal.pcbi.1004842

Multi-breed & sequence modelling

• Multi-breed predictions don't work as well as we want

 Marker-based models assume the same allele substitution effect irrespective of "sequence context"
 → data pulls estimates to the "LD context" of large breed(s)

Can we model allele substitution effects in the "sequence context"?

Breeder's framework

THE UNIVERSITY of EDINBURG Royal (Dick) School of Veterinary Studies

Phenomics research trends

New traits/data

- Pedometers, images, IR cameras, MIR, rumen sensors, microbiome, methylation, gene-expression, ...
- High-dimensional data (feature-wise and time-wise)
- Sub-phenotype definitions!? → Breeding objectives

Phenomics research trends – application in UK

• MIR \rightarrow cow status (pregnancy, bTB, ...)

Coffey et al.