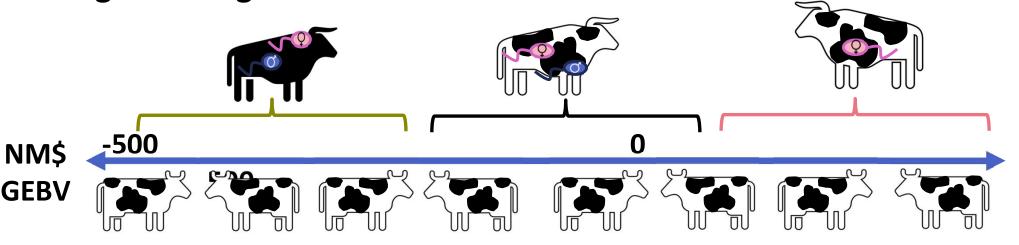
Quantifying the use of and the genetic progress from advanced mating strategies in US dairy herds

Bailey L. Basiel¹, Jason R. Graham², and Paul M. VanRaden¹

¹USDA ARS Animal Genomics and Improvement Laboratory

²Council on Dairy Cattle Breeding



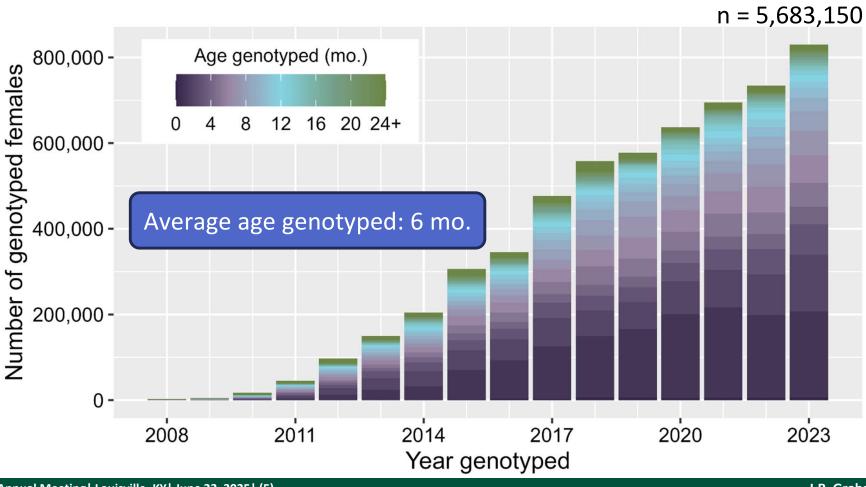
Background

- The use of female genomic testing and mating with sexed and beef semen is increasing in US dairy herds
- Models suggest that combining these technologies reduces genetic lag

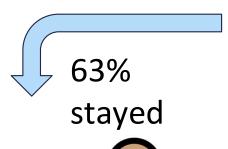
Objectives:

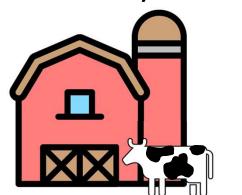
- Quantify the advanced mating strategies utilized in US dairy herds
 - Replacement heifer genotyping
 - Beef semen
 - Sexed semen
- Compare the genetic merit of replacement heifers by herd mating strategy

Data


National Cooperator Database

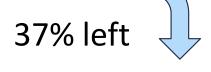
- Genotypes of individual US females from 2008-2023
 - Subset of GTd heifers born prior to 2022 in herds on DHI test in 2023 and 2024
- Format 5 breeding records verified by calving between 2008-2023
 - Service sire NAAB to determine breed and sex sorted status
- Heifer EBV from Aug. 2024 national evaluation


Age of US dairy females at the time of GT submission



Culling genotyped heifers

982,536 genotyped heifers


NM\$: \$582 ± 511

NM: \$563 ± 511

For every SD increase (\$511) in a GTd heifer's NM\$ EBV, the odds she remained in the herd she was born in through first calving increased by

13.6%

NM\$: \$533 ± 509

Classifying herds by mating strategy

CON

Within a given herdyear, calves born were conceived only w/ conventional dairy semen

BC

≥ 1 calf born was conceived w/ beef semen, the remainder were conceived w/ conventional dairy semen

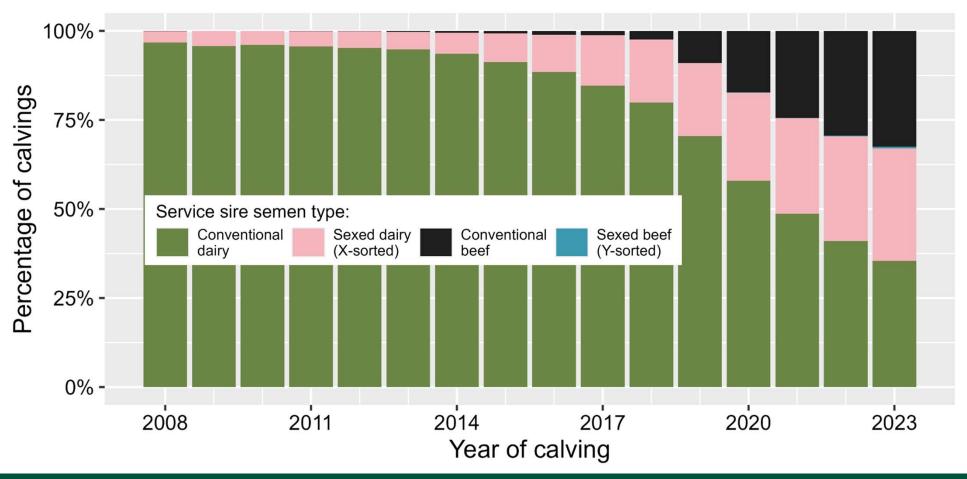
SC

≥ 1 calf born was conceived w/ sexed dairy semen, the remainder were conceived w/ conventional dairy semen

GT-SC

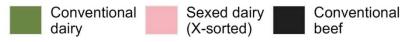
SC *AND* ≥ 1 heifer (≤24 mo. old) **genotyped** within a given herd-year

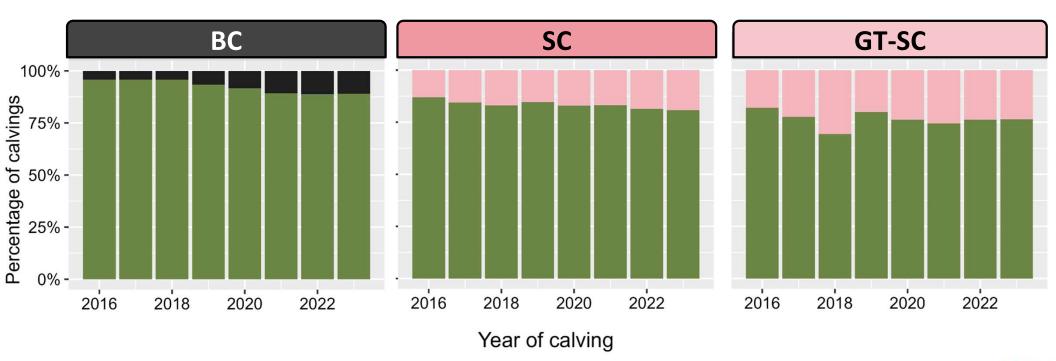
BSC


≥ 1 calf born was conceived w/ beef semen and ≥ 1 calf born was conceived w/ sexed dairy semen

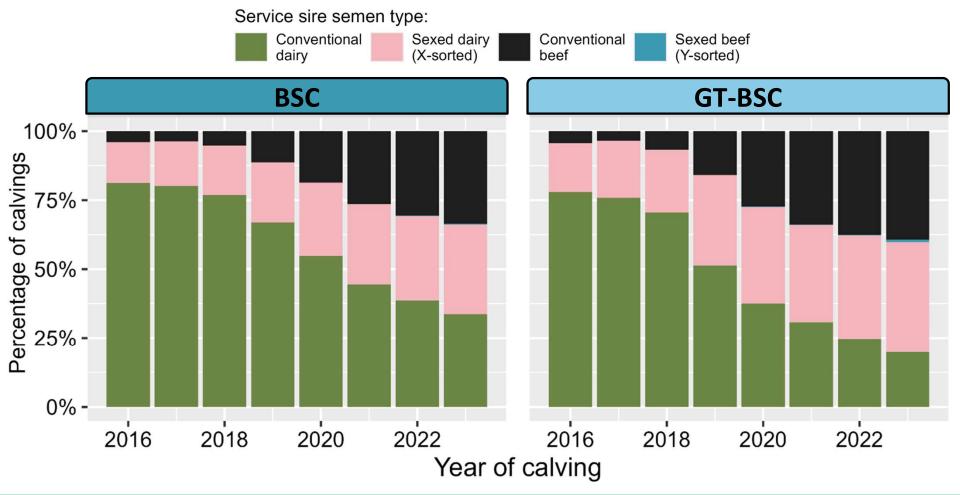
GT-BSC

BSC *AND* ≥ 1 heifer (≤24 mo. old) **genotyped** within a given herd-year


Proportion of annual calvings by semen type



Calvings by semen type and herd mating strategy


Service sire semen type:

Calvings by semen type and herd mating strategy

Production traits

EBVs of heifer calves born in 2023 by herd mating strategy

	CON	ВС	SC	BSC	GT-SC	GT-BSC
n heifers	25,264	26,684	32,902	279,271	17,604	296,335
(n herds)	(1,117)	(786)	(891)	(1,810)	(231)	(778)
NM\$	678 ^d	857 ^c	532 ^e	963 ^b	678 ^d	1,203
Milk	849 ^c	991 ^b	689 ^d	1,019 ^b	714 ^d	1,091ª
Fat	30.4 ^d	37.1°	25.1 ^e	42.1 ^b	31.4 ^d	51.6ª
Protein	27.7 ^d	32.7 ^c	23.1 ^e	35.2 ^b	25.9 ^{de}	40.1ª

Longevity traits

EBVs of heifer calves born in 2023 by herd mating strategy

		CON	ВС	SC	BSC	GT-SC	GT-BSC
	n heifers	25,264	26,684	32,902	279,271	17,604	296,335
	(n herds)	(1,117)	(786)	(891)	(1,810)	(231)	(778)
_	NM\$	678 ^d	857 ^c	532 ^e	963 ^b	678 ^d	1,203ª
	SCS	2.90 ^b	2.87 ^c	2.93ª	2.86 ^c	2.90 ^b	2.82 ^d
,	PL	3.01 ^d	3.80 ^c	2.57 ^e	4.44 ^b	3.53 ^c	6.01 ^a
	LIV	-0.13 ^c	0.53 ^b	-1.19 ^d	0.62 ^b	-1.04 ^d	1.26ª

Fertility traits

EBVs of heifer calves born in 2023 by herd mating strategy

	CON	ВС	SC	BSC	GT-SC	GT-BSC
n heifers	25,264	26,684	32,902	279,271	17,604	296,335
(n herds)	(1,117)	(786)	(891)	(1,810)	(231)	(778)
NM\$	678 ^d	857 ^c	532 ^e	963 ^b	678 ^d	1,203ª
DPR	-0.97 ^{bc}	-0.85 ^{ab}	-1.21 ^d	-0.81ª	-1.23 ^{cd}	-0.71a
CCR	-0.50 ^d	-0.17 ^c	-0.98 ^e	0.10 ^b	-0.86 ^e	0.60ª
HCR	1.83 ^d	2.01°	1.78 ^d	2.35 ^b	1.85 ^{cd}	2.82ª
EFC	8.34 ^d	9.63 ^c	6.97 ^e	10.19 ^b	6.83 ^e	11.36ª

EBVs of heifer calves born in 2023 by herd mating strategy

	CON	ВС	SC	BSC	GT-SC	GT-BSC
n heifers	25,264	26,684	32,902	279,271	17,604	296,335
(n herds)	(1,117)	(786)	(891)	(1,810)	(231)	(778)
NM\$	678 ^d	857 ^c	532 ^e	963 ^b	678 ^d	1,203ª
BWC	0.51 ^b	0.29 ^c	0.86ª	0.26 ^c	0.87 ^a	0.00d
UDC	0.90 ^d	0.85 ^d	1.39 ^b	1.03 ^c	1.69ª	1.11 ^c
FLC	0.54 ^b	0.42 ^c	0.90ª	0.48 ^{bc}	1.05ª	0.42 ^c

Type composites

Big cows win modern shows

Type composites

EBVs of heifer calves born in 2023 by herd mating strategy

	CON	ВС	SC	BSC	GT-SC	GT-BSC
n heifers	25,264	26,684	32,902	279,271	17,604	296,335
(n herds)	(1,117)	(786)	(891)	(1,810)	(231)	(778)

Breeding objectives of SC and GT-SC herds likely differ from herds that use other mating strategies

	BWC	0.51 ^b	0.29 ^c	0.86ª	0.26 ^c	0.87ª	0.00 ^d
•	UDC	0.90 ^d	0.85 ^d	1.39 ^b	1.03 ^c	1.69ª	1.11 ^c
	FLC	0.54 ^b	0.42 ^c	0.90ª	0.48 ^{bc}	1.05ª	0.42°

Conclusions

- US dairy herds are rapidly adopting advanced mating strategies
- Herds that adopt all tools have heifers with greatest genetic merit across production, longevity, and fertility traits
- Herds that use a combination of sexed and conventional semen have heifers with the greatest genetic merit for type traits

Thanks! Questions?

Dr. Jason R. Graham

Consultant

Council on Dairy Cattle Breeding

Email: jason.graham@uscdcb.com

Dr. Bailey L. Basiel

ORISE Postdoctoral Fellow

Animal Genomics and Improvement Laboratory

Email: baileybasiel@gmail.com

