

Investigations on the metafounder concept in ssGBLUP based on a simulated cattle population

Judith HIMMELBAUER, Hermann SCHWARZENBACHER, Christian FUERST, Birgit FUERST-WALTL Interbull meeting, Lyon, August 26th 2023

What is the aim of the study?

ssGBLUP for German-Austrian-Czech Fleckvieh population since April 2021

15 UPG and scaling of G to match A for fitness traits

one of the next steps in the national evaluation system: metafounder

Aim:

- test different methods for gamma estimation
- compare the difference between genetic evaluations with and without MF

for a very simple population structure with two base populations and without any unknown pedigrees

How to simulate two MF?

- common founder population: 2 500 generations evolution
- two traits (trait 1 and trait 2)
- population is split in to two subpopulations (A, B)
- 15 generations of positive/negative selection based on TBV of trait 1
- subpopulations are again merged
- 30 years of selection by PBLUP and 8 years of selection by ssGBLUP based on trait 2
- controlled mating of subpopulations and animals are selected separately by subpopulation

Dataset for analysis

dataset from last year of simulation

all females with offspring have phenotypes

90% of phenotypes of old animals (first 15 years) randomly deleted

final dataset:

- 1 105 500 animals
- 154 500 phenotypes
- 204 900 genotypes

results are based on 10 repetitions

Estimation of Gamma matrix

• true: $\Gamma = 8 * cov(p_A, p_B)$ with true base allele frequencies

- $\Gamma = 8 * cov(p_A, p_B)$ with estimated base allele frequencies (Garcia-Baccino et al., 2017)
 - **BFQ_pure:** base allele frequencies from purebred animals
 - **BFQ_all:** base allele frequencies from purebred and crossbred animals

- Method of moments based on summary statistics... (Legarra et al., 2015)
 - **MM_pure:** ...for multiple pure populations
 - **MM_cross:** ...for populations with crosses

Estimation of Gamma matrix

true average Gamma:

$$\Gamma = \begin{pmatrix} 0.631 & 0.575 \\ 0.575 & 0.632 \end{pmatrix}$$

→ BFQ_all estimated true Γ most accurately in this situation

→ genotypes of crossbreeds are important

Genetic evaluations

	PED	no_UPG	UPG_qp	MF_true	MF_est	MF_sc
SNP information	×	✓ _(*)	✓ _(*)	✓ (*)	✓ _(*)	√ (*)
accounting for 2 base populations	✓ (UPG)	×	✓ (UPG)	✓ (MF)	✓ (MF)	✓ (MF)
relationships between and within base populations	×	×	×	✓ (true)	✓ (estim.)	✓ (true)
scaled variance components	-	-	-	×	×	✓ _(**)

(*) ssGBLUP; G computed with APY
(**)
$$\sigma_{related}^2 = \frac{\sigma_{unrelated}^2}{1 + \frac{\overline{diag(\Gamma)}}{2} - \overline{\Gamma}} = \frac{0.3}{0.713} = 0.421$$
 (Legarra et al., 2015)

Results for UPG/MF estimates

true average difference: 0.834 genetic standard deviations

→ MF underestimate difference

→ smallest bias: PED and UPG_qp

→ smallest error variance: UPG_qp

Validation statistics

for animals of the last generation:

Correlation (c): c = cor(TBV, EBV)

Bias (b): $b = \overline{EBV} - \overline{TBV}$

Dispersion (b_1 **):** $TBV = b_0 + b_1 \cdot EBV + e$

Validation statistics

ZUCHT

Correlation:

→ no significant differences with/without MF

Bias:

→less bias with MF **Dispersion**:

 \rightarrow no over-/under dispersion with MF

Validation statistics

Estimated Γ:

→ no significant difference

Scaled variance components:

→ no difference in correlation

 \rightarrow upward bias

 \rightarrow overdispersion

ZUCHT

DATA

Conclusion

- estimation of Gamma matrix based on estimated base allele frequencies works very good, if genotypes from crossbreed animals are used to estimate base allele frequencies
- metafounder have a positive effect on bias and dispersion in this simple situation
- scaling of variance components lead to worse validation statistics in the simulated scenario

 \rightarrow investigations on more complex situations with missing pedigrees and more MF are necessary

Thank you for your attention!