Selection of sequence variants to improve dairy cattle genomic predictions

J. R. O'Connell,¹ M.E. Tooker,² D.M. Bickhart,² and J.B. Cole,² and P. M. VanRaden²

¹University of Maryland School of Medicine, Baltimore, MD, USA

²Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA

joconnel@medicine.umaryland.edu

2015 Interbull meeting presentation

- Strategies to choose from millions of imputed sequence (SEQ) variants
 - O'Connell and VanRaden
 - Based on simulated data

2015 simulated data

- 26,984 HOL bulls in U.S. reference population
- 30 million simulated variants; 10,000 QTLs
- 30 equal-length chromosomes (100 Mbases)
- 3 different chip densities (HD, MD, LD)
- 5 independent traits (same QTL locations)

leff O Connel

Interbull annual meeting, Puerto Veras, Chile – October 25, 2016 (3)

Simulation: REL from 1M, 60K+1M subset

	1 million near QTLs							
Trait	600K	60K+25K	Differ- ence	All 1M	Differ- ence			
1	80.3	85.4	5.1	86.7	6.4			
2	80.1	85.3	5.2	87.7	7.6			
3	80.4	84.9	4.5	86.1	5.7			
4	78.6	83.5	4.9	84.8	6.2			
5	81.2	86.0	4.8	87.6	6.4			
Avg.	80.1	85.0	4.9	86.4	6.3			

Interbull annual meeting, Puerto Veras, Chile – October 25, 2016 (4)

1000 Bulls Genome Project

- 1000 Bulls Genome Project is an international SEQ project that seeks to pool resources in order to impute SEQ-derived genetic variants across a wide range of cattle breeds
- To join the project required a minimum of 25 animals sequenced at 10.5× coverage and approval by the project's steering committee
 - USDA contributed 76 bulls (26 Holstein)

1000 Bulls Genome Project (*continued***)**

- SEQ alignment map created according to set specifications and collected from partners
- SAMtools used to identify SNPs and indels and produce genotype probabilities
- Beagle used for imputation
- Project data heavily processed, filtered, and imputed
 - 10% of 60K and HD SNPs missing

Interbull annual meeting, Puerto Veras, Chile – October 25, 2016 (6)

SNP vs. SEQ variants

• SNPs

- At least 2 different nucleotides (A, C, G, or T) observed
- Previous SNP chips only include these
- SEQ data has many insertions/deletions (indels)
 - Indels can range in length (up 50 bases)
 - Not easily captured by chip technology
 - Calls have lower quality than for SNPs

• Other more complex variant classes (such as copy number variants) were not identified from the raw data

Methods for HD+, HD+indels (HD+I), 77K

- Current HD chip has 312,614 usable SNPs after removing more than half due to high LD
- HD+: 481,904 candidate SEQ SNPs added
 - 107,471 exonic
 - 9,422 splice variants (same gene, different protein)
 - ▶ 35,242 untranslated regions at beginning and end of genes
 - 329,769 SNPs 2kb upstream or 1kb downstream of genes
- HD+I: Also added 249,966 indels in or near genes to HD+
- 77K: Add 17K to current 60K evaluation chip to compare with Wiggans' 77K selected from HD

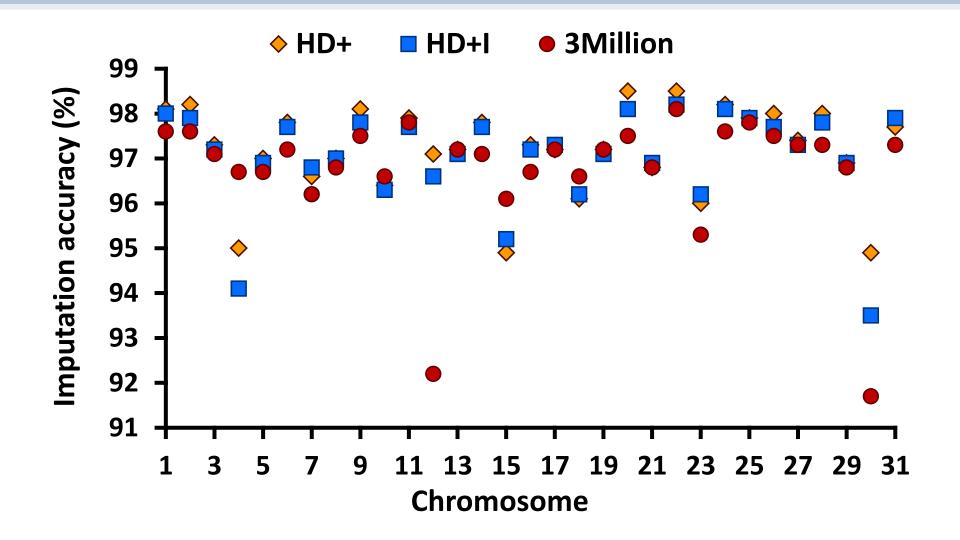
Edits to 39 million variants

Edit	Number removed
Remove MAF < 0.01	20M
Remove for LD > 0.95	13M
Total removed	33M
Total remaining	6M
Imputation	
Remove for imputation accuracy	3M

Jeff O'Connell

Interbull annual meeting, Puerto Veras, Chile – October 25, 2016 (9)

Methods for imputation

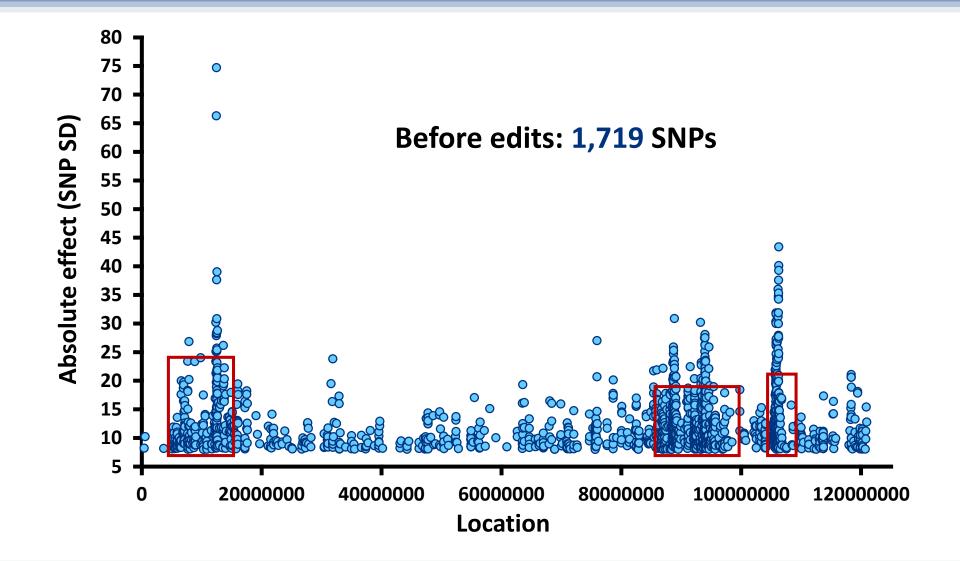

Imputation quality assessment

- Select 40 of 440 SEQ Holsteins
- Reduce to HD
- Impute to SEQ
- Compare with original SEQ
- HD imputed genotypes for 26,970 progeny-tested Holstein bulls
- Findhap designed for equally spaced markers, but SEQ-selected markers are bunched near genes

O'Connel

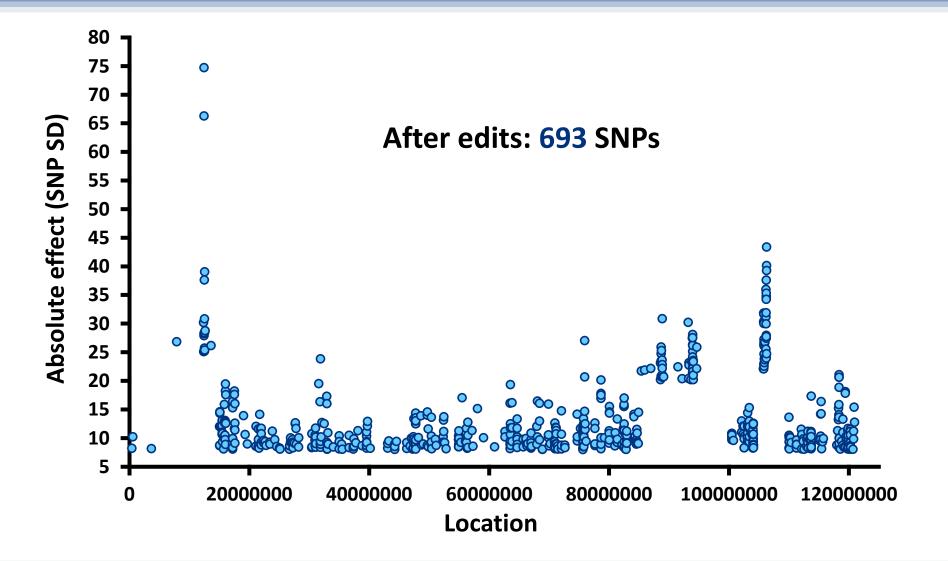
Imputation accuracy

Jeff O'Connell


Selecting the best SEQ variants

- Developing field no "gold" standard as to best way to select variants
- 77K chip
 - HD+ results used to choose 1,000 variants with large effects for each of the 33 traits
 - Reduce 33,000 to 17,000
 - SNPs near DGAT1 and other QTL
 - 60K chip
 - Duplicate SNPs that effect multiple traits

Jeff O'Connel



Chr 5 net merit SNP selection example

Jeff O'Connell

Chr 5 net merit SNP selection example

Gains in REL

		HD + candidate SNPs			60K + selected		
Trait	HD only	HD + <i>Differ-</i> 482K ence	HD + <i>Differ-</i> indels <i>ence</i>	60K only	60K+ Differ- 17K ence		
Milk	34.1	33.9 <i>–</i> 0.2	33.9 <i>–0.2</i>	34.3	35.7 1.4		
Fat	33.7	34.0 <i>0.3</i>	33.4 <i>–0.3</i>	34.3	35.1 <i>0.8</i>		
Protein	27.9	27.0 <i>–0.9</i>	26.7 <i>–</i> 1.2	27.5	28.2 0.7		
Fat %	49.2	52.7 <i>3.5</i>	52.4 <i>3.2</i>	52.9	54.8 <i>1.9</i>		
Protein %	42.1	41.6 <i>0.5</i>	43.0 <i>0.9</i>	41.6	44.3 2.7		

Gains in REL (continued)

		HD + candida	te SNPs	60K + selected		
Trait	HD only	HD + <i>Differ-</i> 482K ence	HD + <i>Differ-</i> indels <i>ence</i>	60K 60K+ <i>Differ-</i> only 17K <i>ence</i>		
PL	36.1	33.9 <i>–0.3</i>	36.4 <i>0.3</i>	35.6 38.2 <i>2.6</i>		
SCS	35.9	34.0 <i>0.2</i>	37.1 <i>1.2</i>	35.1 37.0 <i>1.9</i>		
DPR	30.8	27.0 <i>–0.8</i>	31.2 <i>0.4</i>	29.0 33.0 <i>4.0</i>		
CCR	28.7	52.7 <i>–</i> 0.6	28.8 <i>0.1</i>	28.9 31.8 <i>2.9</i>		
HCR	19.0	41.6 <i>1.3</i>	19.7 <i>0.7</i>	20.5 21.5 <i>1.0</i>		

Gains in REL (continued)

		HD + candidate SNPs			60K + selected			
Trait	HD only	HD + 482K	Differ- ence	HD + indels	Differ- ence	60K only	60K+ 17K	Differ- ence
Final score	24.7	25.5	0.8	25.8	1.1	24.6	27.8	3.2
Stature	30.4	32.4	2.0	32.8	2.4	30.3	34.7	4.3
Strength	29.9	31.8	1.9	31.8	1.9	29.9	34.5	4.6
Dairy form	33.8	35.3	1.5	35.8	2.0	35.0	38.2	3.2
Net merit	23.8	24.3	0.5	24.4	0.6	23.4	24.7	1.3

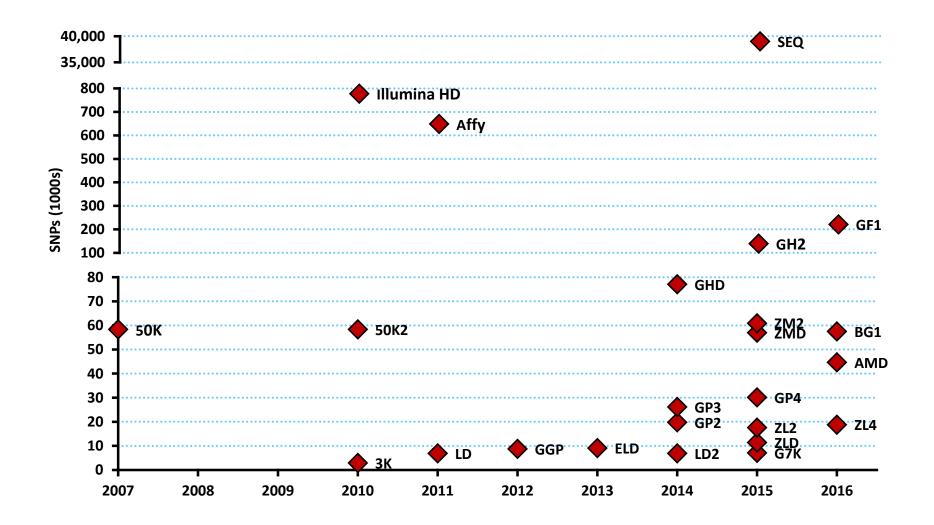
Overall gains in REL

	HD + cand			
Trait group	HD + 482K	HD + indels	60K + 17K	
Production	0.6	0.5	1.5	
Health	-0.1	0.5	2.5	
Calving	-0.6	-1.8	3.3	
Туре	1.0	0.8	3.2	
All traits	0.6	0.5	2.7	

Interbull annual meeting, Puerto Veras, Chile – October 25, 2016 (18)

- 39M sequenced genotypes from 444 Holsteins edited to 6M
- Imputed 6M to 26,970 reference bulls then edited to 3M
- Added gene-centric loci to HD chip to create HD+ and HD+I
- Estimated effect sizes using 2012 data
- Selected 17K SNPs to add to 60K
- Compared HD+ and HDII to HD and 77K to 60K using 2016 data

- HD+ and HD+I candidate approach
 - Negative REL differences
 - Prior variance spread thinner
 - Indels have less accurate calls
- 77K chip selection approach
 - Difference in REL always positive
 - Average REL gain of 2.7 percentage points across traits
 - Best performance


Sequence data – the future?

- The 1000 Bulls Genome Project run5 1500 bulls
 - Unfiltered data on 70M variants available
- The 1000 Bulls Genome Project run6 3000 bulls
 - Number of Holsteins?
 - Release date?
- Additional independent SEQ projects underway
- Better reference assembly
- Resources to collect data and generate independent call sets

SNP selection – the future?

- Fixed or variable number for each trait
- GWA, multiple regression or other methods to estimate effect size
- Bioinformatics
 - Gene expression, proteomics, methylation, chromatin structure to find [e,m,me,p]QTLs
 - Prioritize non-genic SNPs and SNPs in LD groups
- Functional data
 - Difficult and expensive to go from correlation to causality

Integration of SNP selection into genomics

Jett O'Connel

Integration of SNP selection into genomics

- Different chips designers will choose different SNPs
- Low density chips will not able to include all SNPs
- SEQ SNPs may not perform on chip
- Need sufficient number of chips to power imputation
- Timing of sequencing, SNP selection and chip design
- Evaluating performance of SNPs for future designs

O'Connel

Wrapping it up

- Acknowledgments
 - JRO supported by USDA SCA 58-45-14-070-1
- Slides available at <u>https://aipl.arsusda.gov/publish/present.htm</u>
- Stay tuned for updates next year!

