GxE for age at slaughter in Irish dairy and beef crossbreds using a genomic reaction norm model

Birgit Gredler-Grandl,

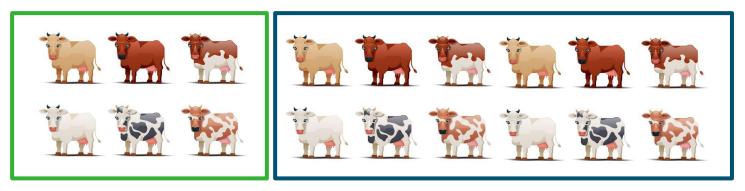
Jeremie Vandenplas, Alan Twomey, Mario Calus

Interbull Open Meeting 2022, Montreal

Genomic GxE models

- Multi-trait approach and reaction norm model can be implemented relying on:
 - Genomic relationships (GREML)
 - Random regression on SNP genotypes (RR-REML)
- GREML and RR-REML are equivalent
 - Homogeneous (co)variance assumed for all SNPs
- Certain regions in genome may harbour QTL → assumption of equal (co)variances is violated

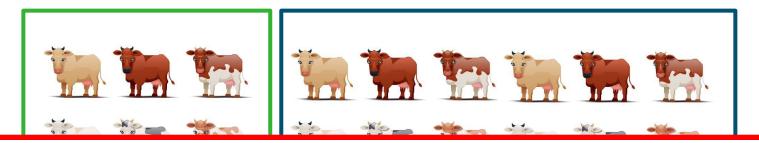
Model heterogeneous SNP variances


Make SNP (co)variances heterogeneous by weighing

- (1) Weights derived from estimated SNP effects
- (2) Re-compute SNP-effects using those weights
- Issue: computing (1) & (2) from the same data may inflate large SNP-effects

Proposed solution: split data in two

- Estimate SNP-effects assuming equal (co)variances for all SNP
- Calculate SNP specific weights within environment



 Estimate GEBV using the 2nd subset, applying weights on SNP (co)variance matrix within environment

Proposed solution: split data in two

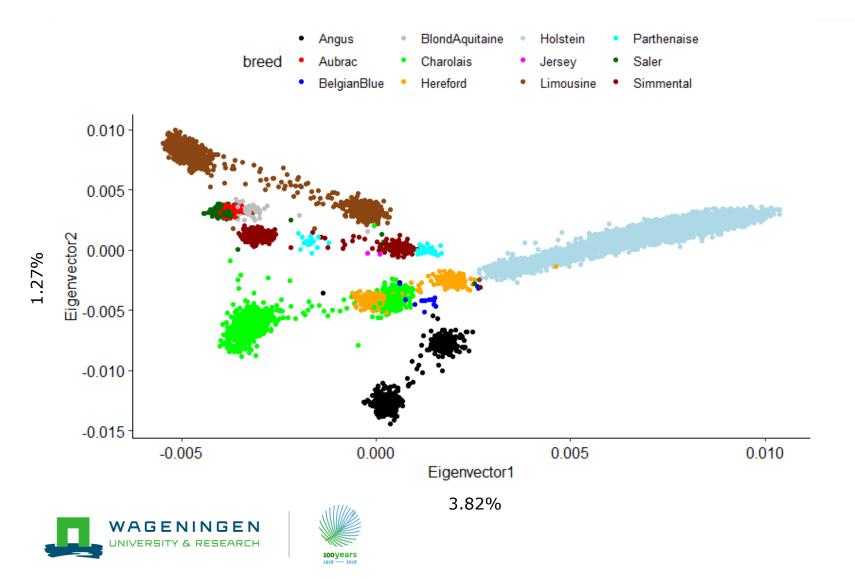
Approach has been tested in simulated data resulting in slightly higher accuracies of GEBV (Gredler-Grandl and Calus, 2021)

Calculate SNP specific weights within environment

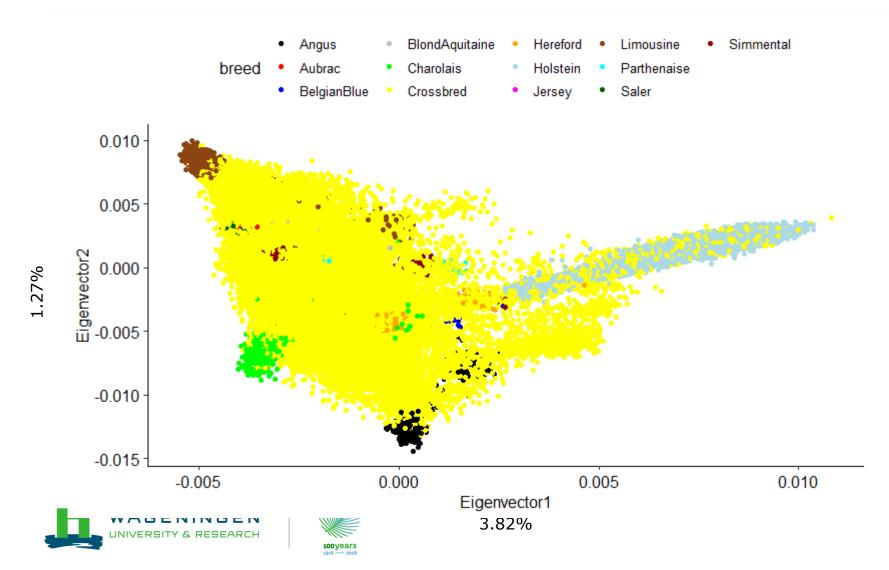
matrix within environment

Objective

Estimate GxE for age at slaughter in an Irish dairy and crossbred population modelling either homogeneous (HOM) or heterogeneous (HET) SNP (co)variances across the genome


Application in Irish beef crossbred data set

- age at slaughter novel trait relevant for efficiency and environmental impact of beef production
- 14,193 genotyped bulls, steers, heifers
- HD imputed genotypes (662,011 SNPs)
- Yield deviation as phenotypes for genomic analysis
- CG-effects as continuous descriptor of environment
 - 2783 CG
 - Animals same gender and similar birthday or age purchased into the same herd in close period of time
 - Minimum 3 animals per CG

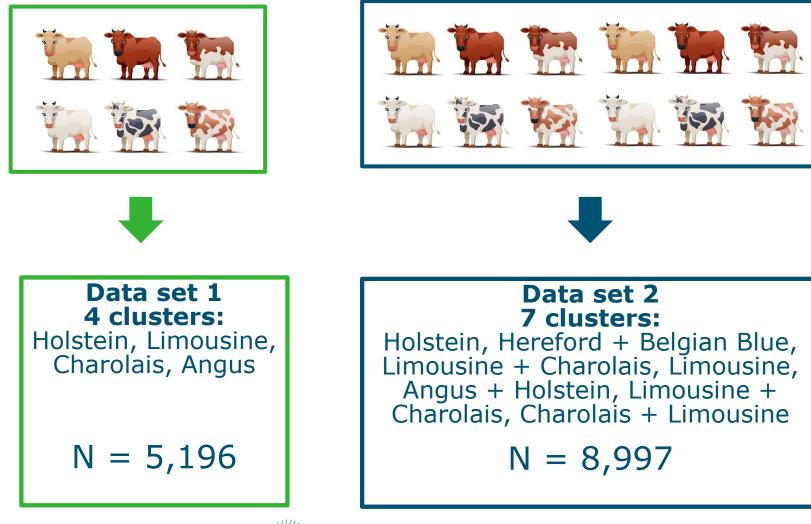


Breeds: PCA G-Matrix purebred and crossbred animals

Breeds: PCA G-Matrix purebred and crossbred animals

How to define sets for analysis?

- K-means clustering approach (similar Saatchi et al., 2011)
- Applied to genomic relationship matrix of the herds based on average genotypes of the herd
- Distance matrix between herds computed as follows:


$$d_{ij} = 1 - \frac{g_{ij}}{\sqrt{g_{ii} * g_{jj}}}$$

Number of clusters set to 12 to ensure all main breeds are represented at least by 3 clusters

How to define sets for analysis?

Model Data set 1

Reaction norm model (mtg2)

 $y = \mu + \beta_0 + Q\beta_1 + \tau_0 + \tau_1$

- Backsolve SNP-effects for intercept and quadratic regression coefficient (calc_grm)
- Calculate weights as:

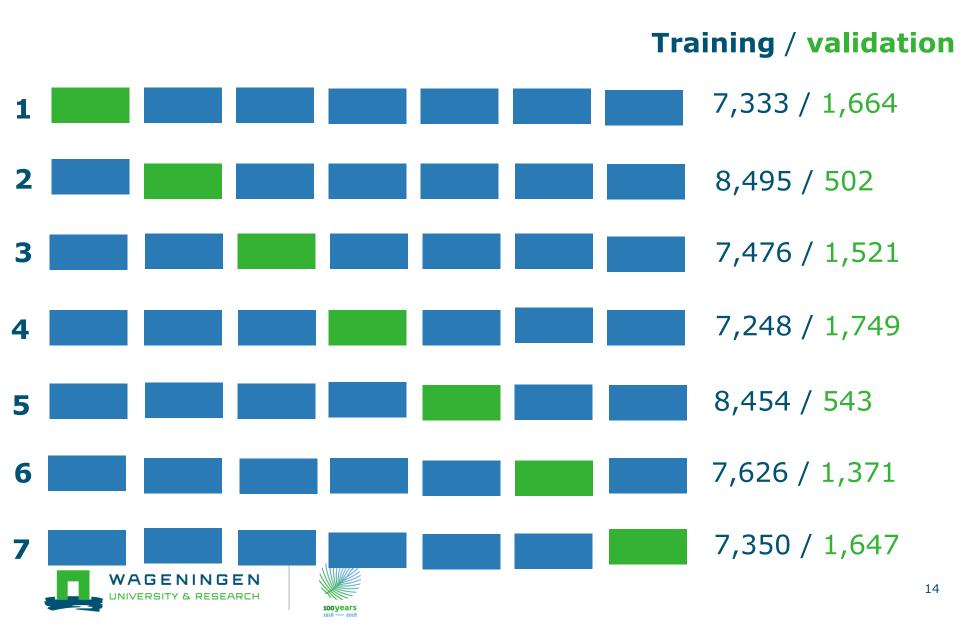
$$D_{k_i} = \sqrt{2p_k(1-p_k)}\widehat{\alpha}_{k_i}$$

Model Data set 2

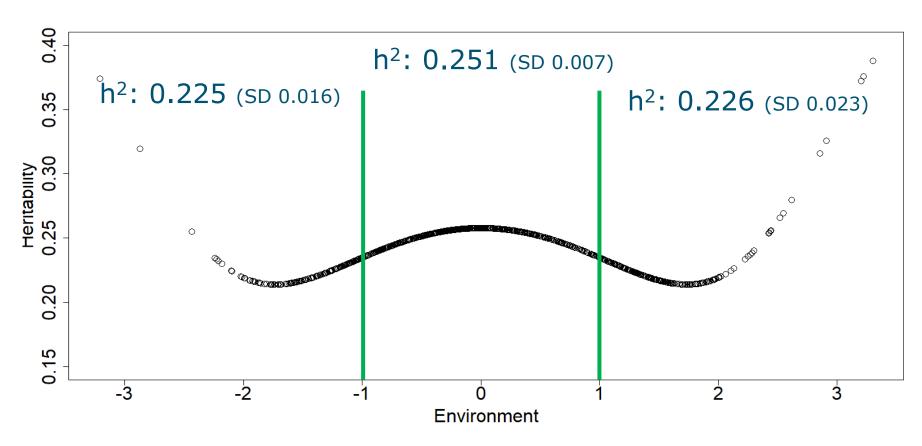
SNP-BLUP (MiXBLUP)

 $y = \mu + Z\gamma_0 + QZ\gamma_1 + e$

 Apply weights (D) on SNP (co)variance matrix:


$$D_{k_i} = \sqrt{2p_k(1-p_k)}\widehat{\alpha}_{k_i}$$

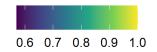
•
$$Var([\gamma_0, \gamma_1]') = \sqrt{D_{k_i}} \mathbf{G} \sqrt{D_{k_i}}$$



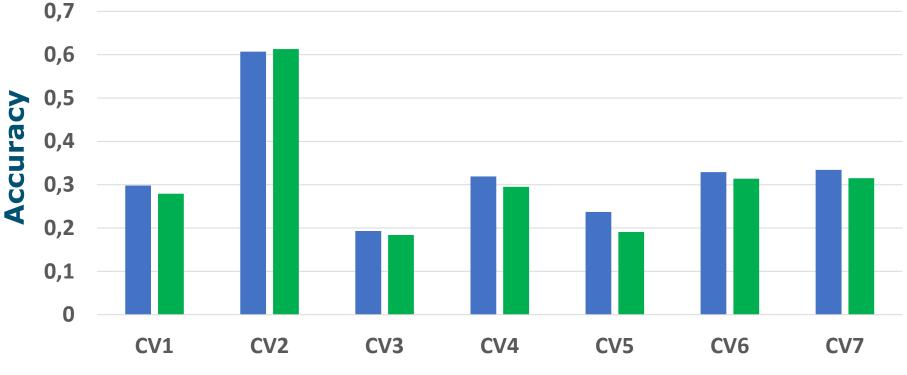
7-fold Cross validation in data set two

Results – Heritability across environments

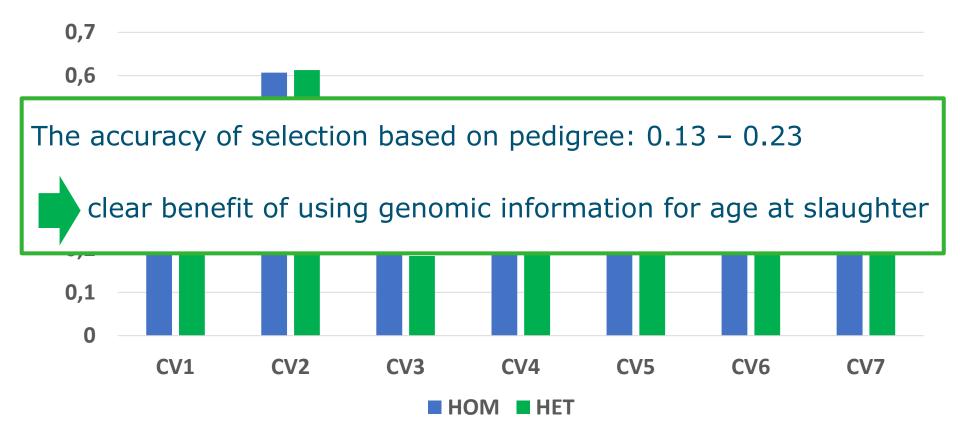
Average heritability: 0.242 (SD 0.017)



Results – genetic correlation across environments


2.29 -	0.86	0.75	0.71	0.67	0.64	0.61	0.59	0.58	0.58	0.57	0.57	0.57	0.58	0.6	0.63	0.69	0.75	0.81	0.88	1
	1	0.97	0.96	0.94	0.93	0.91	0.9	0.9	0.89	0.89	0.89	0.89	0.89	0.91	0.92	0.95	0.97	0.99	1	0.88
0.72 - 2 -0.15 -	1	1	0.99	0.98	0.97	0.96	0.95	0.95	0.94	0.94	0.94	0.94	0.95	0.95	0.97	0.98	0.99	1	0.99	0.81
	0.98	1	1	0.99	0.99	0.98	0.98	0.97	0.97	0.97	0.97	0.97	0.97	0.98	0.99	1	1	0.99	0.97	0.75
	0.96	1	1	1	1	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	1	1	1	0.98	0.95	0.69
	0.94	0.99	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.92	0.63
	0.92	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	1	0.99	0.98	0.95	0.91	0.6
	0.91	0.97	0.99	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.95	0.89	0.58
	0.91	0.97	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.94	0.89	0.57
	0.91	0.97	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.94	0.89	0.57
ັວ -0.15 -	0.91	0.97	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.94	0.89	0.57
Envi	0.91	0.97	0.99	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.94	0.89	0.58
	0.91	0.97	0.99	0.99	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.95	0.9	0.58
	0.92	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	1	0.99	0.98	0.95	0.9	0.59
	0.93	0.98	0.99	1	1	1	1	1	1	1	1	1	1	1	1	0.99	0.98	0.96	0.91	0.61
-0.76 -	0.94	0.99	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.99	0.97	0.93	0.64
	0.95	0.99	1	1	1	1	1	0.99	0.99	0.99	0.99	0.99	0.99	1	1	1	0.99	0.98	0.94	0.67
	0.97	1	1	1	1	0.99	0.99	0.99	0.99	0.98	0.98	0.98	0.99	0.99	0.99	1	1	0.99	0.96	0.71
	0.98	1	1	0.99	0.99	0.98	0.98	0.97	0.97	0.97	0.97	0.97	0.97	0.98	0.99	1	1	1	0.97	0.75
-1.57 -	1	0.98	0.97	0.95	0.94	0.93	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.92	0.94	0.96	0.98	1	1	0.86
-1.57 -0.76						-0.15 Environment 1							0.72						2.29	

Accuracy of GEBV with HOM and HET



HOM HET

Accuracy of GEBV with HOM and HET

Summary

- Large genetic variation for age at slaughter
- GxE for age at slaughter exists to some extent (extreme environments)
- For majority of environments genetic correlation >0.89
- HOM and HET result in similar accuracies of GEBV
- Genomic reaction norm models results in higher accuracy compared to pedigree information
- Genomic information has potential to increase efficiency and reduce environmental impact of beef production

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No 727213

