Variance adjustments and Mendelian Sampling tests

Paul VanRaden¹, Jay ¹ USDA Animal Genomics and I ² Council on Dairy Cattl INTERBULL TECHNICA

Paul VanRaden¹, Jay Megonigal² and João Dürr²

- ¹ USDA Animal Genomics and Improvement Lab, Beltsville, MD, USA
 - ² Council on Dairy Cattle Breeding, Bowie, MD, USA
 - INTERBULL TECHNICAL WORKSHOP, AUG 26, 2018

Topics

- Quick review of variance adjustment methods
- Traits using variance adjustments in USA
- Examples of breed-sex-traits not passing Mendelian Sampling variance test
- Review of USA results for MS variance test
- Comparison of new vs. previous MS test software

Variance adjustment methods

- Simple scaling such as mature equivalent (phenotypic mean and SD are proportional by age)
- Pre-adjustment for phenotypic and / or genetic var
 - Time group, breed, region, herd, heritability
- Simultaneous variance adjustments within model
- Nonlinear (threshold) models for categorical data

References on variance adjustment

- Kendrick, 1941. Standardizing Dairy Herd Improvement Records in Proving Sires. Bureau of Dairy Ind. Mimeo. Circ. 925.
- Gianola and Foulley, 1983, Harville and Mee, 1984
- Wiggans and VanRaden, 1991
 - $y^* = \mu + (y \mu) \sigma_{base} / \sigma_{herd.year}$
- Meuwissen et al., 1996, Gengler et al., 1999

Adjustment of U.S. traits

Trait group	Adjusted since:	V
Production	1941	Ν
Production	1992	Ρ
Somatic cell score	2009	Ρ
Calving traits	1985	S
Conformation (minor breeds)	1998	A b
Cow livability	2016	Ρ
Health traits	????	Ρ

/ariance adjustment method

- Mature equivalent (multiplicative)
- Pre-adjust for herd variance
- Pre-adjust for herd variance
- ire-MGS threshold model
- Adjusted in model until 2016, now pre-adjusted for etter convergence
- Pre-adjust
- Pre-adjustments being tested

Example of USA test results

- 60 breed-sex-trait tests conducted, 53 tests passed
 - 5 breeds x 8 traits for males, 4 traits for females
- Variance adjustments designed to stabilize cow MS:
 - HOL MS trend tests: -0.1 milk, +0.1 fat, -0.7 protein
- But a few bull trends exceeded the +-2.0 limit
 - HOL bull tests: +2.5 milk, +1.3 fat, +1.2 protein
- Why the difference? Perhaps bull preselection

MS trends outside limits

Breed	Sex	Trait	Adjusted Trait?	MS trend limit	MS trend	Failed ¹ original	Failed revise
HOL	Male	milk	Yes	+-2.0	2.5	1	n/a
HOL	Male	int	No	+-2.0	2.1	0	2
JER	Male	fat	Yes	+-2.0	2.2	0	0
BSW	Male	SCS	Yes	+-2.0	-2.9	0	n/a
RDC	Female	milk	Yes	+-2.0	-3.4	0	5
RDC	Female	pro	Yes	+-2.0	-2.9	0	5
RDC	Female	SCS	Yes	+-2.0	-2.2	0	1

¹Number of individual year tests that failed. For HOL milk the last year deviated from the trend.

Interduit verity output for duit 5D (U.S. HOL milk yield)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 **Bull birth year**

Interduit verify v5. IVIS vanuation (U.S. HOL mik yield)

Conclusions

- About 10% of USA breed-sex-trait tests failed
- All but 1 were for variance-adjusted traits
- Difficult to change bull variance if cow variance OK
- RDC testing is difficult because of crossbreeding
- Computation was reasonable even for HOL cows
- Individual year tests are better in the new version

Acknowledgments

- Mel Tooker
- Tyrisevä et al provided the software
- U.S. dairy data providers

