

Bavarian State Research Center for Agriculture

Approximation of Reliability in Single Step Models using the Interbull Standardized Genomic Reliability Method

M. Erbe, C. Edel, J. Dodenhoff, E. Pimentel, K.-U. Götz Institute for Animal Breeding Bavarian State Research Centre for Agriculture

Background & Motivation

Background:

Animal Breeding

- development of routine single step models
- conformation traits in Fleckvieh breed with relatively simple model structure and manageable system size
- unsolved: How to calculate/approximate reliabilities?

- Interbull Standardized Genomic Reliability Method
 - proposed by Liu et al. (2017)
 - designed not only for single step models, but looked applicable

Aim of this study: Assess Liu et al.s' reliability approximation

- in a small data set \rightarrow whole system is invertible
- in a routine-like data-set \rightarrow aspects like computing time etc.

Description of data sets

محو

		A Print
-6	0.1	D
	C.V	
	1 april	
		1 16 BOOK

	Small test data set	Routine-like data set
data basis	Subset of pig routine evaluation	Routine data set for conformation traits
# in pedigree	16'500	3'300'000
# with phenotypes	4'300	1'400'000
h ² of the modeled trait	0.33	0.24
# with genotypes	5'800	78'000
# with genotypes + phenotypes	180	5'500
# with genotypes + ≥ 1 non- genotyped, but phenotyped offspring	600	12'000

Malena Erbe – Interbull Workshop, Dubrovnik – Aug 26th 2018

Steps of the approach of Liu et al.

Who is reference individual?

- not so easy to define in single step environments
- in this approach: only genotyped individuals can be reference

Diagonal elements for W⁻¹

- avoid double counting
- information of non-genotyped, but phenotyped offspring into genotyped reference individuals

EDC/ERC-based approach

- supplementary document by Interbull reliability working group
- ERC for genotyped females with phenotypes and EDC for genotyped bulls from non-genotyped daughters with phenotypes

Check final reliabilities for genotyped individuals

Animal Breeding

Malena Erbe – Interbull Workshop, Dubrovnik – Aug 26th 2018

Malena Erbe – Interbull Workshop, Dubrovnik – Aug 26th 2018

Animal Breeding

Animal Breeding

What could be missing?

- information from non-genotyped, but phenotyped daughters not transmitted to genotyped dam
- information from further generations not included in EDCs
- \rightarrow extend EDC calculation
- alternative: Harris & Johnson based approach e.g. as implemented in ApaX99

Steps of the approach of Liu et al.

- Considering residual polygenic variation:
 - k is proportion of variance assumed to be not explained by markers
 - How to consider this when starting from a marker model?

• proposal in Liu et al. (2017): $R_{DGVpoly_approx}^2 = \begin{cases} (1-k)R_{DGV}^2 & for cand \\ R_{DGV}^2 & for ref \end{cases}$

Comparison of model-based $R^2_{DGVpoly}$ with $R^2_{DGVpoly_approx}$

Polygenic contribution

0.9*R²(DGV) only for cand 0.6*R²(DGV) only for cand

Polygenic contribution

Steps of the approach of Liu et al.

Propagation to non-genotyped individuals

optional step to propagate gain of genotyped individuals to nongenotyped ones

$$PEV_{prop} = approx \left(\begin{bmatrix} 1'D^{-1}1 & 1'D^{-1}K \\ K'D^{-1}1 & K'D^{-1}K + A^{-1}\lambda \end{bmatrix}^{-1} \right)$$

Weighting factors in D^{-1} are gains ϕ_{gain} from previous step.

check final reliabilities for non-genotyped individuals

Propagation to non-genotyped individuals

Malena Erbe – Interbull Workshop, Dubrovnik – Aug 26th 2018

Implementation steps in routine-like data set

Step 1: Reliability of SNP genotypes

> Step 2: Reliability of DGV

> > Step 3:

Adjusting the theoretical reliabilities

Step 4:

Calculating the genomic EDC gain

Step 5: Propagation of genomic information to non-genotyped relatives

> Step 6: Final reliabilities enhanced with genomic information

Implementation steps in routine-like data set

Implementation steps in routine-like data set

Step 1: Reliability of SNP genotypes

> Step 2: Reliability of DGV

> > Step 3:

Adjusting the theoretical reliabilities

Step 4:

Calculating the genomic EDC gain

Step 5: Propagation of genomic information to non-genotyped relatives

> Step 6: Final reliabilities enhanced with genomic information

~ 30 min computationally demanding

solved in 1-2 minutes, very little CPU & memory

Implementation with snp_blup_rel

snp_blup_rel for the routine example:

- applied on a Linux-Server with 96 threads and 512 GB RAM
- program used different number of threads
- no writing of MME output (takes long)
- Total # of genotyped individuals: 78k

# reference arimals	# SNPs	peak virtual memory	time in total	time for inversion	time for reliabilities
78k	41k	48 GB	35 min	9 min	12 min
16k	41k	38 GB	25-30 min	10 min	8 min
11k	41k	38 GB	25 min	10 min	8 min

Conclusions/Outlook

Results from small test data set:

Animal Breeding

- Reference set definition and way of weighting have an impact on results.
- Correct way of considering polygenic contribution?
- very promising results for genotyped individuals
- Propagation to non-genotyped individuals not satisfying in this data set.
- Computing issues from routine-like data set:
 - step 1 demanding, but feasible best only from time to time and/or for a small number of traits
 - All other steps are less critical in terms of memory, CPU and time.
- More general/'philosophical' implementation questions:
 - Any solutions for summarizing different traits in one run?

 $\begin{bmatrix} 1'W^{-1}1 & 1'W^{-1}Z \\ Z'W^{-1}1 & Z'W^{-1}Z + I \frac{\sigma_e^2}{\sigma_{SNP}^2} \end{bmatrix}$

- Integration of non-genotyped, but implicitly imputed individuals to the reference set?
- What about continuous evaluations for candidates e.g. in short time intervals on database level?

Thank you for your attention!

