

A new Holstein Haploytpe affecting calf survival

S. Kipp¹, D. Segelke¹, S. Schierenbeck¹, F. Reinhardt¹, R Reents¹, C. Wurmser², H. Pausch², R. Fries², G. Thaller³, J. Tetens³, J. Pott⁴, M. Piechotta⁵, W. Grünberg⁵

¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit), 27283 Verden, Germany

- ² Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, 85354 Freising, Germany
- ³ Lehrstuhl fuer Tierzucht, Christian-Albrechts-Universitaet, 24098 Kiel, Germany
- ⁴ Masterrind GmbH, 27283 Verden, Germany
- ⁵ Klinik für Rinder, Stiftung Tieraerztliche Hochschule Hannover, 30173 Hannover, Germany

Sandra.kipp@vit.de

Background

- Reports from German industry
- Calves with chronic diarrhea
 - → No response to any treatment
- Test on pathogens: negative
- Secondary diseases like pneumonia and oedemas
- Underdevelopment (in body weight)
- Died between 3 weeks and 6 months after birth
- Identical twins out of split embryo, raised on two farms, revealed identical phenotype
- Pedigree analyses revealed common ancestors
- Indication of genetic background

Pathological examination

- Three animals
 - "Normal" at birth
 - Age of death: 1-5 months
 - Weight at death: 36.5 59 kg
 - Normal height
- No apparent cause of death
- Most probably affected calves starved
- Pathological findings: All fat reserves are used up including the fat of the spinal cord
- ➔ Indication of disorder of fat metabolism

Blood analyses

Parameter of fat metabolism are conspicious

Animal	Cholesterol [mmol/l]	HDL [mmol/l]	LDL [mmol/l]	Triglyceride
Case 1	0.17	0.1	<0.02	0.05
Case 2	0.15			
Case 3	0.12			
Case 4	0.41			
Control 1	1.53	1.36	0.19	0.16
Control 2	2.46	1.85	0.68	0.40
Control 3	2.21	1.84	0.43	0.36
Control 4	2.5	2.38	0.33	0.29

Affected animals show significantly reduced values of lipid blood levels

- Also reduced values for control 1
- Codominant inheritance?

vit

Identification of disease-associated region

- Genome-wide association study based on Illumina 54K SNP-Chip genotypes
 - 23 cases (common phenotype and died)
 - 11.177 control animals (survived first year of life).
- Case-Control-Study
- Data available from the reporting system in Germany

strong association on BTA11

Non-affected animals need to be heterozygous/alternative homozygous

Affected animals (= cases) must have a common homozygous region within the associated region

Position [Mb]

Homozygosity mapping BTA 11

Haplotype frequency in population

- Haplotype is identified
- Haplotype analyses reveal
 - 234 homozygous animals (80 % dead)
 - 14.093 heterozygous animals (8.7% of all genotyped animals)

Effect of risk matings

- Increase of frequency since 2000 \rightarrow high probability of risk matings
- Analysis based on 6.9 million female calf records

Effect of haplotype on blood cholesterol levels

- Comparing heterozygous carriers (14) versus "free" animals (141)
 - Blood cholesterol levels were routinely measured
 - 50K-SNP-Chip genotypes \rightarrow information about haplotype status

Cholesterol level of heterozygous carriers clearly lower (1.65 vs. 2.30)

Economic importance

- ~3,400 homozygous animals born per year in Germany
 - Uniform mating of all bulls
 - Carrier frequency: 8.7 %
 - 1,800,000 Holstein calves born per year in Germany
- 1.3 million Euro loss per year
 - 400€ per calf (value of calf, average lifetime: 85 d, medical treatment)
- Actual loss could be higher
 - Widespread, intensive use of carrier bulls
 - Heterozygous animals → disadvantages in fat metabolism?

Animal	Cholesterol [mmol/l]	HDL [mmol/l]	LDL [mmol/l]	Triglyceride
Case 1	0.17	0.1	<0.02	0.05
Carrier	1.53	1.36	0.19	0.16
Control 1	2.46	1.85	0.68	0.40

Homozygous animals alive

Position [Mb]

07 July 2015

Reasons for homozygous animals alive

- All died homozygous animals trace back double to Maughlin Storm
- Survived homozygous animals got at least one allele from Comestar Laurie Sheik
- → Within the identified haplotype there must exist two variants
 - one carrying the causal mutation, the other not

Identification of causal mutation

Sequence based analyses

- Request of all position in the genome including causal mutation
 - Whole genome re-sequencing
- 43 animals with whole genome re-sequencing data
 - 5 Red dairy cattle
 - 38 Holstein (black and red)
 - 1 affected animal
- Chromosome 11
 - Chromosome including the causal mutation
 - 755,920 variants detected (2303 positions on 54K-SNP-Chip → 0.3%)

\rightarrow How to pinpoint the causal mutation?

Sequence based analyses (II)

 \rightarrow affected animal must be homozygous

2)	BB		AA				
	Affected animal†		Remaining 42 animals (Holstein and RDC)				
 No carrier (AB) included in German data 							
			0.4E				

→ Allele frequency (B) \leq 0.045

3) Associated homozygous region in the genome

4) Monogenic defect

Filteríng of genic variants

498 variants

Sequence based analyses (III) Collaboration with Technical University Munich

- Access to data of 1000 Bull Genomes Project (Run 4)
 - ~ 1,150 animals re-sequenced
 - 288 Black Holstein animals, 23 Red Holstein animals
 - 37.92 Million variants detected

AA		BB
Remaining animals (Holstein and other breeds)	Prominent Storm offspring	Affected animal †

➔ Potential variants (n=20) could not be confirmed, because …

- False-positive carriers in Holstein \rightarrow do definitely not carry this defect
- Occurrence in other breeds \rightarrow Holstein specific defect

Identification of causal mutation

Most probably the causal mutation is located in a gap in the reference sequence

- currently hard to find the causal mutation
 - but new reference sequence announced for 2015/2016

Summary and outlook

- Phenotype: non-curable diarrhea in calves & cholesterol deficiency
 genetic disposition
- Identified haplotype is clearly associated with calf mortality
 - Results based on complete calf survival data of entire German Holstein population
- Haplotype has high impact on worldwide Holstein population
- Accuracy of haplotype test for prediction of carrier status: 80%
 - Two identical 50K-based haplotypes: affected ↔ healthy
- Causal mutation has not yet been identified
- Improvement of haplotype test
 - More sequence data of ancestors
 - High-density genotyping of ancestors

Many thanks to Masterrind for the intensive cooperation and financial support.