

Development of genetic evaluations for metabolic disease traits for Canadian dairy cattle

Astrid Koeck,¹ J. Jamrozik,^{1,2} G. J. Kistemaker,² F. S. Schenkel,¹ R. K. Moore,³ D. M. Lefebvre,³ D. F. Kelton,⁴ and F. Miglior,^{1,2} ¹CGIL, University of Guelph, Guelph, ON ²Canadian Dairy Network, Guelph, ON ³Valacta, Saint Anne de Bellevue, QC ⁴Department of Population Medicine, University of Guelph, Guelph, ON

Canadian health recording system

- Health recording system since April 2007
- Recording done by producers on a voluntary basis
- Eight diseases are recorded: mastitis, displaced abomasum, ketosis, milk fever, retained placenta, metritis, cystic ovaries and lameness
- Overall goal is to develop a **genetic evaluation for** resistance to **diseases** in Canadian dairy cattle

Estimate genetic parameters for metabolic diseases (ketosis, displaced abomasum, milk fever) and their main predictors (body condition score, fat to protein ratio, milk ß-hydroxybutyrate) in Canadian Holsteins

Disease data

Data validation

 Minimum disease frequency of 1% per herd and year

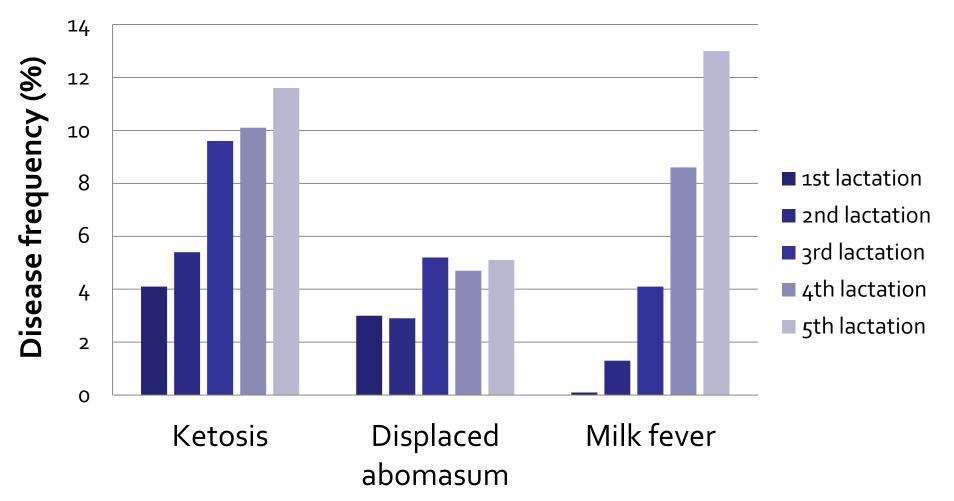
• Trait definition

- Binary traits, scored as 1 or 0, based on whether or not the cow had at least one disease case
 - within 100 days after calving for ketosis
 - within 100 days after calving for displaced abomasum
 - within 30 d after calving for milk fever

Data

- BCS from routine type classification
- **F:P** from routine milk recording system

• Milk BHBA


- Screening for hyperketonemia based on a milk BHBA analysis offered in Canada by Valacta (DHI organization responsible for Québec and Atlantic provinces) since October 2011
- Test-day milk samples (5-100 DIM) are analyzed by a mid infrared spectrometer with previously developed calibration equations for milk BHBA from Foss

Descriptive Statistics

Trait	No. Records	Mean (SD)
Ketosis, %	120,497	5.1
Displaced abomasum, %	296,539	3.3
Milk fever, %	207,903	1.2
BCS, score	230,222	2.82 (0.35)
F:P at the first test-day (5-40 DIM)	410,253	1.32 (0.27)
BHBA at the first test-day (5-40 DIM), mmol/L1	55,623	0.106 (0.081)

¹For genetic analyses BHBA was transformed as follows: **log**_e(BHBA+1)

Summary of analyzed data Disease frequencies by parity

Model – Disease traits, F:P, milk BHBA

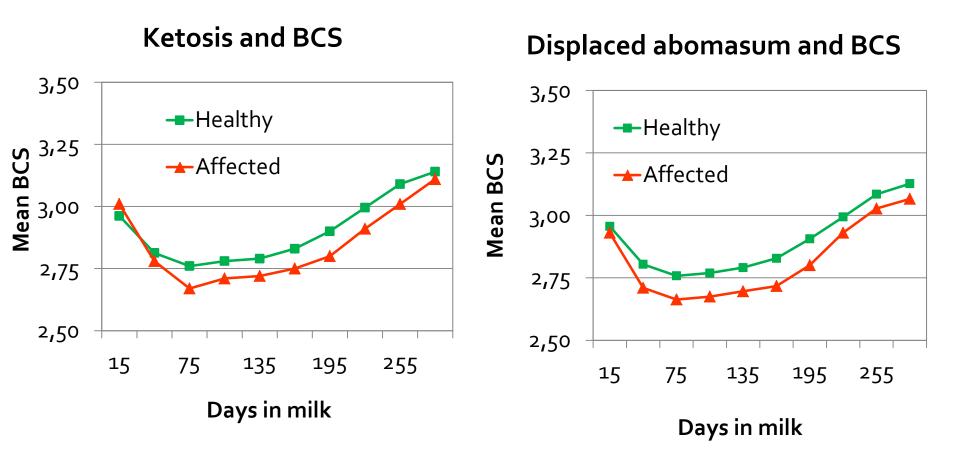
First and later lactation traits were treated as **different traits**. The model for **first lactation traits** was as follows:

$$y = X\beta + Z_s s + e$$

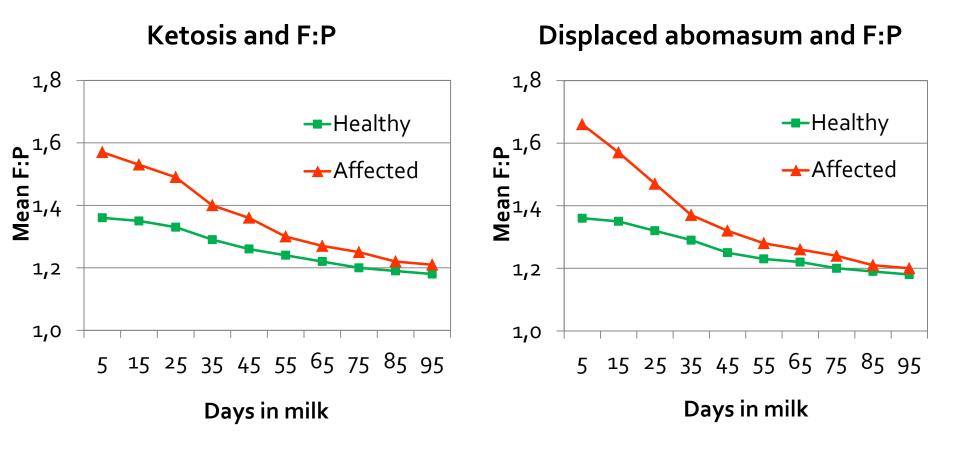
- **y** = vector of observations
- β = vector of systematic effects, including fixed effects of age at calving, year-season of calving and herd-year of calving for all traits and days in milk for F:P and milk BHBA
- **s** = vector of random additive genetic sire effects
- **e** = vector of random residuals
- X, and Z_s are incidence matrices

For **later lactation traits** a fixed effect of lactation (2, 3, 4, 5) was fitted (instead of age at calving) and the permanent environmental effect was included.

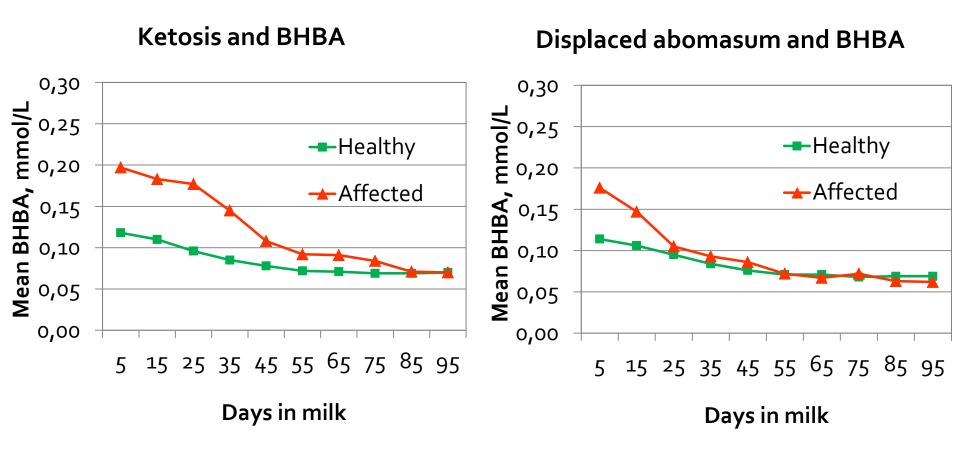
Model – BCS


$y = X\beta + Z_s s + e$

- **y** = vector of observations
- β = vector of systematic effects, including fixed effects of age at calving-stage of lactation and herd-round-classifier of calving
- **s** = vector of random additive genetic sire effects
- **e** = vector of random residuals
- X, and Z_s are incidence matrices



- Uni- and multivariate linear sire models
- DMU package (Madsen and Jensen, 2008)


Phenotypic associations Disease and BCS – First lactation

Phenotypic associations Disease and F:P – First lactation


Phenotypic associations Disease and BHBA – First lactation

Genetic parameters – First lactation

Trait	KET	DA	BCS	F:P	BHBA
Ketosis (KET)	0.02	0.76	-0.54	0.37	0.75
Displaced abomasum (DA)		0.05	-0.40	0.19	0.15
BCS			0.22	-0.30	-0.43
F:P				0.16	0.32
BHBA					0.10

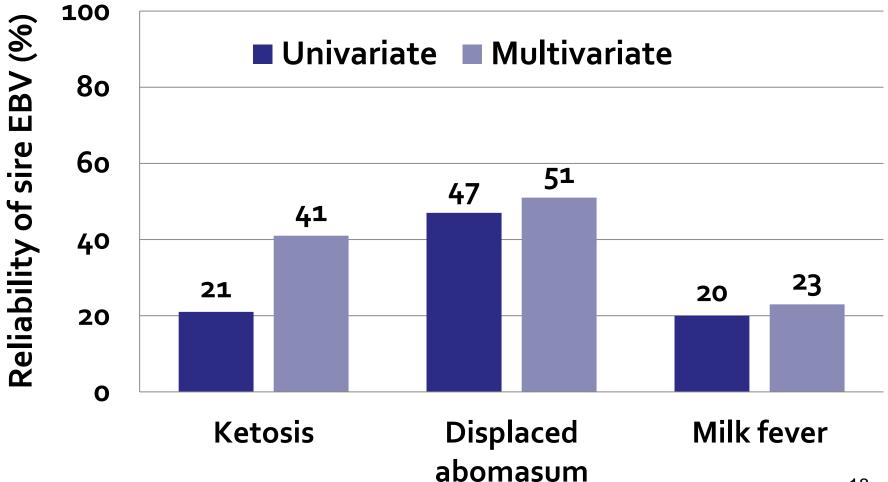
EBV Reliability – First lactation Sires with 51-100 daughters

Phenotypic associations – Later parities

Similar phenotypic associations between ketosis/displaced abomasum and F:P and BHBA as in first lactation cows

Milk fever and F:P

1,8 0,30 Mean BHBA, mmol/L ---Healthy 0,25 1,6 ---Healthy Mean F:P 0,20 Affected Affected 0,15 1,4 0,10 1,2 0,05 0,00 1,0 15 25 35 45 55 65 75 85 95 15 25 35 45 55 65 75 85 95 5 5 Days in milk Days in milk


Milk fever and BHBA

Genetic parameters – Later lactations

Trait	KET	DA	MF	F:P	BHBA
Ketosis (KET)	0.03	0.54	0.39	0.57	0.75
Displaced abomasum (DA)		0.02	0.15	0.24	-0.03
Milk fever (MF)			0.01	-0.02	0.33
F:P				0.12	0.25
BHBA					0.11

Trait	Genetic correlation
KET ₁ and KET ₂₋₅	0.79
DA ₁ and DA ₂₋₅	0.86

Reliability – Later lactations Sires with 51-100 daughters

Next steps

- Ketosis strongly correlated with milk BHBA → accumulate more BHBA records
- Milk fever will not be included in routine genetic evaluation (low reliability)
- 9 trait model:

First parity	Later parities
Ketosis	Ketosis
DA	DA
BCS	
BHBA	BHBA
F:P	F:P

Acknowledgments

- All dairy producers recording health data are gratefully acknowledged
- Funded by
 - DairyGen Council of CDN and NSERC of Canada
 - Dairy Research Cluster Initiative: Dairy Farmers of Canada, Agriculture and Agri-Food Canada, the Canadian Dairy Network and the Canadian Dairy Commission
 - Ontario Genomics Institute

Agriculture and

Agri-Food Canada

Aariculture et

Agroalimentaire Canada

Canadian Dairy Commission

Commission canadienne du lait

