

Experiences with the Interbull genomic reliability method using a mixed reference population

Zengting Liu, H. Alkhoder and F. Reinhardt IT Solutions for Animal Production (**vit**), Germany

Introduction

- Interbull working group Genomic Reliability Calculation (GREL)
 - A standardized statistical method developed (Liu et al. 2017)
 - Issues on applicability for single-step genomic models and double counting cows phenotypes in case of a mixed reference population
- Fourth video conference of GREL WG on 03 May 2018 after WCGALP
 - A supplementary document (distributed on 05 June 2018 by Interbull)
 - Definition of genomic reference population for single-step models
 - EDC adjustment for reference bulls with reference daughters
 - Bulls representing non-genotyped daughters
 - Avoid double counting of data contribution by reference daughters
- New options in snp_blup_rel (Strandén, LUKE, Finland)
 - More compact formats, no space & in Fortran style, for genotype data
 - Compact binary and faster format for the inverse matrix of LHS of MME
 - Process genotyped animals in groups to allow any # genotyped animals

Data materials of DEU HOL with a mixed reference pop.

- Phenotype data from April 2018 national and MACE evaluations
 - National cows with deregressed EBV and ERC
 - a test-day model for production trait (*mil*) with 21,073,615 Holstein cows
 - Bulls with MACE or national deregressed EBV and EDC
 - 152,560 Holstein bulls worldwide
 - 43 regular traits + 13 direct health traits

Genotype and pedigree data from July 2018 monthly genomic evaluation

- 489,255 genotyped Holstein animals
- 45,613 SNP markers
- 36, 892 reference bulls + 90,737 reference cows = 127,629 for trait *mil*
- Genotype & phenotype data as if stemming from a single-step evaluation
 - 21,453,082 genotyped animals or phenotyped cows (Holsteins)
 - 27,230,923 animals in pedigree

Data materials for a genomic validation study

- The majority of reference cows born in the recent 3-4 years
- Data truncation for a genomic validation
 - Reference bulls from April 2016 evaluation
 - Reference cows born in the recent 2 birth years due to the short history of cow genotyping
- Genomic reference population (trait *mil*) for the truncated validation
 - Reference cows: 44,891 (full evaluation: 90,737)
 - Reference bulls: 33,683 (full evaluation: 36,892)
- Interbull GEBV Test performed and passed with the mixed reference pop.
 - Based on validation bulls only

EDC adjustment for bulls for a mixed reference pop.

- Cow's own data contribution to herself
 - Reliability $R_i(o) = h^2$ with complete data information
 - $\varphi_i = \lambda R_i(o)/(1 R_i(o))$
- Cow's data contribution to her sire
 - $R_i(o)/(4 R_i(o) R_{dam}(o)) = R_i(o) / 4$ if dam has no data or is missing

•
$$\varphi_i^{\ a} = \lambda R_i(o)/(4 - R_i(o) [1 + R_{dam}(o)])$$

- Bull's EDC from two daughter types: reference and non-reference cows
 - $\varphi_s = \sum_{i=1}^{n_s} \varphi_i^{d} = \sum_{i=1}^{n_g} \varphi_i^{d} + \sum_{i=1}^{n_n} \varphi_i^{d}$

Adjust bull's EDC for his daughters in the same reference population

• $\varphi_s^{mod} = \varphi_s - \sum_{i=1}^{n_g} \varphi_i^{d}$ for national data only, or

•
$$\varphi_s^{mod} = \varphi_s^{MACE} - \sum_{i=1}^{n_g} \varphi_i^{d}$$
 for MACE data

vit

Results and Discussion

- Computing resources by Step 1 of the GREL method (via snp_blup_rel)
 - Using option –memlow 100000
 - Size of the inverse matrix reduced 7.8 Gb from 25 Gb for 45,613 SNP markers
 - Milk yield (*mil*) with 127,629 reference animals:
 - → Sub-step 1: Inverting LHS of MME for reference population
 Peak RAM 87 Gb, 73 minutes total time with 27 cores (Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz)
 - Sub-Step 2: Calculating SNP reliabilities for new animals using

19 cores of 1 server Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz

# newly genotyped animals		Peak RAM (Gb)	Total clock time (min.)
ALL	489,225	85	55
May-Jun 2018	41,189	45	10
Weekly	10,000	24	3.5
Weekly	5,000	20	1.5
Weekly	3,000	19	1.2

Results and Discussion

- Computing resources by Step 2 to 6
 - Run on a single core, many traits run on different cores in parallel
 - Step 5 of propagation of genomic information to non-genotyped relatives: most time consuming:
 - Tracing ancestors and coding all 27.2 mln animals (*mil*): 10 minutes
 - Calculating propagated GREL: 4 minutes
 - The propagation step is NOT needed for tightly timed weekly evaluation
- Total time required by all the steps is acceptable for weekly genomic evaluation

Results and Discussion

- Correlation between the new and current GREL methods (trait: mil)
 - Reference animals: 0.702
 - Genotyped candidates: 0.630 (males: 0.715, females: 0.548)
- The new GREL method gave 3.5% higher for validation bulls, lower heritability traits increased more
- Large GREL differences between reference and candidate animals for traits with a high residual polygenic variance
- Reference cows (mostly genotyped with LD chips) have high GREL values, as imputation accuracy is > 0.99
 - Special data structure caused by the short history of cow genotyping
- Not all results are validated for all the traits yet, specifically related to the GREL after the adjustment procedure

Further developments

- Software *snp_blup_rel*: feasible for weekly or daily genomic evaluation
 - For processing all traits, read (very large) genotype data only once
- All the later steps may be made faster by using multiple cores like Step 1
- Adjusted genomic reliability versus validation R² values
- GREL of candidates decrease with increasing distance to reference pop.
 - More discounted for second or third generation candidates?

Conclusions

- Software snp_blup_rel: feasible for weekly or daily genomic evaluation
 - No approximation is needed, given the **vit** computing resources
 - Propagation to non-genotyped relatives may not be needed for tightly timed frequent genomic evaluation
- Double counting of the data contribution of reference cows in a mixed reference population is avoided
- The standardized GREL method clarified the definition of reference animals for single-step genomic models
- Overall, the standardized GREL method seems to work efficiently and results make sense
- Further investigation and testing are needed

Country feedbacks

- DEA Bavaria (see presentation by Malena Erbe)
 - Application to a single-step model evaluation
- NLD genetic evaluation unit (Herwin Eding)
 - Application to the NLD genomic evaluation
- Spain genetic evaluation centre
 - Noureddine Charfeddine Saeid Naderi
- Italian ANAPRI breeders association
 - Alberto Cesarani on use of snp_blup_rel
- **vit**, German genetic evaluation centre

Acknowledgements

- LUKE of Finland (Ismo Strandén, Esa Mantysaari and Martin Lidauer)
 - New features or options
- National genetic evaluation centres for testing the software snp_blup_rel and Interbull standardized GREL method
 - Feedbacks from more countries are needed
- Interbull genomic reliability calculation working group
 - P. M. VanRaden, M. H. Lidauer, M. P. Calus, H. Benhajali, H. Jorjani & Z. Liu

IT Solutions for Animal Production