General discussion: Technical challenges and possible solutions

Zengting Liu
• Statistical methods
• Input data from countries
• Data needed at international level
• International evaluation and validation
• Results provided to countries
• Integration to national publication
• General aspects
• Short-term and medium-term goals
 • More accurate genomic prediction and identify useful sequence variants
• Short-term for using current chips (mostly 50K): a SNP MACE model
• Medium-term for using sequence data
• Medium-term project: estimate country correlations more accurately using genomic data than using pedigree
Medium-term research projects

• Optimal use of sequence data
 • Bayesian methods and use of biological information
• Identify causal sequence variants
• Reduce the decay of linkage disequilibrium
• Increase accuracy of SNP effects
• Increase the variance explained by SNPs
SNP MACE: Input data from countries

- SNP effect estimates from national evaluations
 - SNP BLUP models (single- or multiple steps)
 - GBLUP models (single- or multiple steps)
 - Back solve GEBV to SNP effects
- Bayesian variable selection SNP models
- French genomic model
LHS and RHS of equations for SNP effects: $Z'R^{-1}Z$ and $Z'R^{-1}y$

- After correcting for or absorbing all other effects, including the residual polygenic effect
- Countries may not have the data in national evaluation
- Standardized method / software
- Data transfer issue for 50k x 50k matrices
A common set of SNP markers is desirable
Converting the country data to the common SNP set
 Conversion of the SNP effects based on equal DGV of reference animals
 $Z' R^{-1} Z$ and $Z' R^{-1} y$ of the converted SNP effects
• Generate between-country data: residual covariances
 • Use of MACE EBV of foreign bulls in training set
 • More common bulls lead to higher residual covariances
 • Similar to GMACE (Sullivan, 2016)
• If SNP effects are based on national phenotypes, residual covariances are zero
• Use current country correlations for SNP effects
• No de-regression step of national SNP estimates
• New solving algorithms for dense matrices
 • No longer sparse matrix as Animal Model
• Parallel computing across SNP markers
• Software development
A special validation

- Cross validation by random selection of data
- Forward prediction by data truncation
- A special validation for sharing reference bulls
 - Scenario 1: countries sharing RP and using MACE data (status quo)
 - Scenario 2: the SNP MACE model applies to the countries using national phenotypes only
 - Scenario 3: the SNP MACE model applies to the countries using MACE EBV of shared reference bulls
Results to participating countries

- MACE SNP effect estimates converted to country own SNP set
 - DGV calculation by countries
- PEV of the converted MACE SNP effect estimates
 - Full PEV matrix or reliabilities of SNP effect estimates
 - Reliabilities of DGV calculated by countries
Results to non-participating countries

- MACE participating countries without genomics
 - SNP effects combined with selection index and country correlations
 - One SNP at a time
 - PEV of the SNP effect estimates
- Countries not included in MACE but with own genomics
 - Assuming ‘desired’ / equal correlations to all the genomic countries
• Considering the residual polygenic effect
 • SNP markers do not explain all genetic variation
• Combining with parental information
 • Not all animals with phenotypes are genotyped
• Countries using single-step models
• Reliabilities for combined GEBV
• Impute genotypes of reference animals to a common set of SNP markers
• Large, dense matrices from countries $\mathbf{Z}'\mathbf{R}^{-1}\mathbf{Z}$
• Genetic trend validation for country SNP effects
 • Converted to animal DGV for the validation?
• Mendelian sampling variance test
• Estimating country correlations of SNP effects
• Thank you for your attention!
Why the international SNP model?

- Optimal use of cow reference populations
 - Less affected by pre-selection than bulls
 - Many cows give more information on LD than their sires
 - Exchanging genotypes of >100,000 cows infeasible
- By-passing international cow MACE evaluation
- Using foreign reference cow information
- For new traits even more advantages
- More accurate evaluation using sequence data and across breeds