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Challenges of genomic selection

The genomic selection is accounted in 

Single-step GBLUP

Frequently ssGBLUP shows

higher genetic trend in selected

animals than the  AMBLUP

Reasons not well understood:

– AMBLUP are often assumed to 

find genetic progress from 

well connected overlapping data

ssGBLUP results cannot be used as input for

– Multi-step genomic evaluations

– MACE

Genomic selection is the main source of 

genetic progress in dairy cattle breeding

In theory evaluations ignoring 

genomic selection 

(= Animal Model BLUP) 

are biased

Still, AMBLUP results are 

used as input:

– Multi-step genomic evaluations

– International Evaluations 

(i.e. MACE)
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GEBV – EBV comparison  (Example I)

Tested:

Nordic Holstein milk production 305 data (milk, protein, fat), including 

about 7.3 million cows in the data and 

10 million animals in the pedigree 

~ 178 000 genotyped animals 
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Single-step in (national) dairy cattle evaluations 

Single-step evaluations on phenotypes

• Czech Republic    Test Day model 2016

• Norway   2019

Pseudo single-step

• Belgium Walloon Region

• New Zealand

(Zoetis, USA. Wellness evaluations)

Under development, 

or to be released next

(not in particular order)

• DFS (Nordic evaluations)

• New Zealand,

• NDL, FRA, IRL, USA, ….

ONLY FEW OFFICIAL SINGLE STEP EVALUATIONS !

• https://interbull.org/ib/nationalgenoforms (accessed 17.6.2019)

Joint ADSA/Interbull Session 24. 6. 20198
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ONLY FEW OFFICIAL SINGLE STEP EVALUATIONS !

• https://interbull.org/ib/nationalgenoforms (accessed 17.6.2019)

WHY NOT YET:

1) Computational solution 

- still under development

2) Single-step Genomic models

- still many open questions

Single-step in (national) dairy cattle evaluations 

• Computational challenge

• Convergence problems

• Prediction bias b0, 

• Over-dispersion b1

• Model:  GBLUP, Bayesian 

”weights”, residual polygenic 

proportion, …
Joint ADSA/Interbull Session 24. 6. 20199
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Background: ssGBLUP is a computational challenge

”Conventional” single-step GBLUP are iterative solutions from the MME 

(Aguilar et al. 2010; Christensen and Lund 2010) 

Here H represents the relationship matrix among animals

where both the NMR relationship matrix A22 and G are

dense matrices of the size of Number of genotyped animals
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Computational solutions / approaches

when > 1,000,000 animals are genotyped

Never compute G-1, but instead:

1. Use sparse approximation G-1
APY

or,

2. Never compute G-1, but instead, compute the two matrix products:

G−1𝐝 as C 𝐝 − T𝜺′T𝜺𝐝
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Computational approaches  - APY ss GBLUP

Never compute G-1, but instead:

1. Use sparse approximation G-1
APY

Divide genotyped animals to core (c) and non-core (y) animals.

Imagine Cholesky decomposition for the G matrix

, but use  

Then 

APY
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APY ss GBLUP

1. Use sparse approximation G-1
APY

– G-1
APY is nice and sparse (has less non-zeros)

i.e.    ~ 2 nc*(ng – nc/2),  where ng animals genotyped and 

nc animal in core

– Requires understanding of population structure to decide whom to 

choose to be core animals 

APY
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Computational  approaches - ss GTBLUP

2. Never compute G-1, but instead compute the two matrix products:

G−1𝐝 as  𝐂−1𝐝 − 𝐓′𝐓𝐝

where d is the direction vector needed in PCG algorithm

ssGTBLUP
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Computational  approaches - T matrix in ssGTBLUP

2. Never compute G-1, but instead compute the two matrix products:

G−1𝐝 as  𝐂−1𝐝 − 𝐓′𝐓𝐝

ssGTBLUP is based on Woodbury matrix identity:

If   𝐆C = 𝐆0 + 𝐂 = ZZ′ + 𝐂 then 𝐆𝐶
−1 = 𝐂−1 − 𝐂−1𝐙 𝐙′𝐂−1𝐙 + 𝐈 −1𝐙′𝐂−1

for example 𝐆ε = ZZ′ + 𝐈𝜀 then 𝐆𝜺
−1 = 𝐈𝜀−1 − 𝐙 𝐙′𝐙 + 𝜀𝐈 −1𝐙′𝜀−1

ssGTBLUP
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2. Never compute G-1, but instead compute the two matrix products:

G−1𝐝 as  𝐂−1𝐝 − 𝐓′𝐓𝐝

ssGTBLUP is based on Woodbury matrix identity:

If   𝐆C = 𝐆0 + 𝐂 = ZZ′ + 𝐂 then 𝐆𝐶
−1 = 𝐂−1 − 𝐂−1𝐙 𝐙′𝐂−1𝐙 + 𝐈 −1𝐙′𝐂−1

or  𝐆𝑤 = (1−w)ZZ′ + 𝑤𝐀22 then 𝐆𝑤
−1 =

𝟏

𝑤
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−1

And this can be expressed as : 𝐆𝑤
−1 =

𝟏

𝑤
𝐀22

−1 − 𝐓′𝐓

Computational  approaches - T matrix in ssGTBLUP

ssGTBLUP
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– ssGTBLUP is no approximation, but instead exact ssGBLUP

– It gives significant computational savings when ng > > > nsnp

i.e. the size of matrix T is   nsnp* ng,    where nsnp number of SNPs

– The T matrix can be rank reduced  

• Koivula et al. 2018 used 14,038 eigenvalues for 101k genotyped 

(similar to  18,359 APY core animals in Masuda et al. 2018)

Properties of single-step GTBLUP

ssGTBLUP
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If you use sparse G-1 you do not want dense 𝐀22
−1

→ Computational methods without LARGE inverses

Never compute 𝐀22
−1, but instead, use two matrix times vector products:

A22
−1𝐝 in 2 pieces as      A22𝐝 − A21(A11)−1A12𝐝

- Multiplications involving  A22and A12 can be done using pedigree file

- Solving (A11)−1 [A12𝐝] can be done using sparse matrix factor of A11

Computational approaches based on sparse G-1 –matrix

APY & ssGTBLUP
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Irish Cattle Breeding Federation (ICBF) evaluation for calving traits

Number of records 3.5 million rows

6 traits all with  direct and maternal genetic effects

Number of pedigree animals: 10.26 million

Number of genotyped (used in the analysis): 1,498,984

Number of markers: 50,240

Computations when > 1,5 M animals are genotyped

19
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Three evaluations 

(genetic groups as regression):

1)  animal model (AM):

2)  ssGTBLUP: 98% by eigen analysis ( = 33,636 SNP equations)

– T matrix in memory

3)  APY33K with random core (33,636 core animals)

– Inverse G matrix in memory

Note: - ssGTeBLUP (wRPG=0.0)

- computations had 10 processors available 

but only ssGBLUP can fully take advantage of them.
20
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Making T for ssGTBLUP and  G-1 for APY

Peak

memory

Time Most time consuming

ssGTeBLUP(98%) 371GB 12.4h Z’Z: 5.2h, eigen: 3.7h, L-1Z: 3.2h

- Te, full 325GB 10.9h

ss APY(core 33K) 592GB 14.2h G make: 3.4h, inverse: 9h

Note:   APY had to be implemented as memory efficient version, 

where G matrix is done in parts.
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Solving the MME

Case Peak

Memory

Time/iter N itererations1 Total Time

AM BLUP 4.3GB 0.18m 239 43 min

ssGTeBLUP(98%) 386.8GB 1.46m 334 8 h 8 min

ss APY(core 33K) 386.8GB 1.34m 440 9 h 50 min

1Convergence assumed when CR =
𝐂𝐱−𝐛 ′ 𝐂𝐱−𝐛

𝐛′𝐛
< 10-6

Note:  - 6 traits all with direct and maternal genetic effect

- 236 milj equations

- genetic groups by regression coefficients 20/trait

Total computing time depends on chosen convergence
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Computational approaches based on 

single-step marker models   - single-step SNPBLUP

Marker Effect Model (ssMEM) by Fernando, Dekkers and Garrick, (2014)    

 ”Impute” expected SNPs to all non-genotyped animals

– Attractive simplicity

– Impractical data storage requirements…. 

can be solved by Imputation “on-the-fly” (Taskinen et al. 2017) 

Legarra and Ducrocq (2012) “Appendix A model” 

• Re-derived by Fernando, Cheng, Golden and Garrick (2016)

• Named as single-step Hybrid Model (ssHM)

• A version with residual polygenic effect by Mäntysaari and Strandén (2016)
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Single-step Hybrid Model 

• Hybrid of snp-BLUP for genotyped animals and animal model of non-genotyped

• Number of random equations:  nSNP + nng

• After adding residual polygenic effect nbr of random equations:

nSNP + nanim (Mäntysaari and Strandén, 2016; EAAP) 

nSNP + nanim + nng (Garrick et al. 2018, WCGALP ) 
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Single-step animal model with marker effects 

• Liu and Goddard augmented the SNP random effects to the vector of animal 

breeding values, and inverted corresponding Ha matrix 

(Gengler et al. EAAP 2012; Liu et al. J. Dairy Sci. (2014)

• This Ha
−1 can be added to standard AM BLUP model with minimal changes

• no need to change RHS etc.

• Convergence has been found problematic

𝐇𝑎
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𝐀11 𝐀12 0
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Convergence

Vandenplas et al.  2018. GSE(50):51

Matilainen et al. 2016. Interbull, Puerto Varas, Chile

Compared to AMBLUP all the single-step

MMEs have large condition numbers

==> Poor convergence

Some of the problems have been solved by

• Accounting inbreeding

• By the manner genetic groups are handled 

Generally ssGBLUP always faster, ssMEM slower

• Large improvements using deflated PCG

(Vandenplas et al. 2018) or ”second level

preconditioner” (Vandenplas et al. 2019)
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Convergence ICBF 6 trait model  (1.5M genotyped)

Animal model, QP transformation

Single step, groups as regression coefficients

CR =
𝐂𝐱−𝐛 ′ 𝐂𝐱−𝐛

𝐛′𝐛

Animal model, groups as regression coefficients

All group regression coefficients in a

preconditioner block

Convergence statistic:

27



© Natural Resources Institute Finland

Model developments

The bias in single-step evaluations

Genomic evaluations are known to over-value the genomic information

• Interbull GEBV validation test b1:

– Estimates the over-dispersion of GEBVs, 

i.e. how much of each unit of GEBV in bull calf will be seen in their progeny means

– Generally Interbull requires  b1 ≥ 0.9

– b1 value can be “fine-tuned” by changing RPG, scaling, blending PA, etc.

– It is not critical in multi-step GEBV, because comparison is within same stage of 

animals

When GEBVs are over-valued, also selection is over-valued, 

and young bulls are on average over evaluated  
28
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Example I revisitted

GEBV                 =    ssGTBLUP with QP transformation, w=30%,  and including  178000 genotypes, FULL data 

GEBV_reduced =    ssGTBLUP with QP transformation, w=30%, and including 178000 genotypes, data REDUCED – 4 years 

Selection candidates

Birthyear 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

N 276 264 298 258 317 341 386 304 250 213 195 192 211 173 131 97 78 70 42

Koivula et al 2019. Unofficial test runs

Reference bulls

Validation bulls
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GEBV validation test results for protein

(593 Holstein validation bulls)

b0 b1 Rv
2 MSE

PA -1.4 0.73 0.19 309.7

GEBV 7.8 0.78 0.45 290.6

Regression of DRP  on PA or   GEBV 

𝑅𝑣
2 = 𝑅𝑚𝑜𝑑𝑒𝑙 1

2

ഥ𝑤

30

b0= b𝑖𝑎𝑠 =
σ𝑖=1

𝑛 (𝑃𝐴𝑖−𝐷𝑅𝑃𝑖)

𝑛

expressed as:

b0 given b1=1.0
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Validation bull DRPs vs GEBVr by birthyear

bias 9.2

b1 0.66

bias 6.3

b1 0.92

bias 7.0

b1 0.91

bias 8.8

b1 0.51
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Model developments

Alternative genomic models

Basic single-step GBLUP assumption: 

• all SNPs can potentially have effect

== Same as computing genomic relationships using all SNP markers

• Useful assumption especially for multi-trait models

-- If SNPs have a’priori different effects, 

the genomic relationships are different for different traits

-- Difficult to implement in  ssGAPYBLUP or ssGTBLUP

Bayesian models or models with different weights for SNPs

• Much easier to utilize single-step marker effect models

• Especially if multi-trait models 

32
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Models under development

Single-step models with meta-founders

Meta-founders by Legarra, Christensen et al. Genetics (2015)

Matrices A22 and G should be compatible with the same base population definition

• Estimate ”genomic self- and across relationships”  (𝚪) in base populations

• Build and use 𝐀22
Γ and (𝐀Γ)−1 according to 𝚪

• Meta-founders will replace the unknown genetic groups

• Promising approach for cross-breed or across-breeds evaluations 
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Summary

Single-step genomic evaluations are needed to maintain 

the unbiasedness of genetic evaluations also in the future

The computational solving cost is not the biggest 

hinderance of implementation

• The easiest are GBLUP methods (ssGTBLUP and ssGAPYBLUP)

• ssMEM and ssHM are good options if causative variants are to be used 

Overprediction, typical to genomic models, will show out more 

in single-step evaluations  

• Finding the best model, testing, validating etc.  can be time consuming
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